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ABSTRACT 

An extended SBM model is proposed to measure the provincial environmental efficiency 

including undesirable input and undesirable output in window analysis. In the index system, 

energy consumption is used as an undesirable input as a new approach and undesirable output is 

a different combination of three kinds of pollution emissions (SO2, COD, and CO2), and the 

dataset covers 30 provinces in China from 2005 to 2017. It is found that there is a big gap in the 

environmental efficiency scores among different provinces and higher scores in the east region 

and lower scores in the west region. In the long run, it has the property of a generally upward 

trend and regional convergence and there is a strong positive relationship with economic growth. 

Then, a variety of econometric models, including panel data model, GMM model, and panel 

Tobit model test the N-shape curve reflecting the relationship between environmental efficiency 

and economic growth, and the conclusions are consistent with robust results. 

Keywords: Environmental Efficiency; Extended SBM Model; Window Analysis; EKC 

1. INTRODUCTION 

It is inarguably that the environment plays an increasingly important role in the modern economy 

and society. Due to different developmental strategies and industrial structures, there are different 

environmental management strategies. The philosophy of "polluting first and treating later" and 

the notion that "the quality of the environment will deteriorate first and then improve with 

economic development" have become the normal phenomenon all over the world. The inverted 

U-shaped environmental Kuznets curve depicts this phenomenon, which has been verified by 

many studies (Grossman and Krueger, 1995; Shafik, 1994; Farhani et al., 2014). 

In the last three decades, the Chinese economy has experienced enormous growth. Its gross 
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domestic product (GDP) has leaped to the second place in the world since 2010, reaching 99 

trillion RMB (about 14.1 trillion US dollars) in 2019, which is about 2/3 of the United States 

GDP, and its GDP per capita has reached 10,276 US dollars, close to the world’s average1. At the 

same time, China’s rapid industrialization and urbanization have produced so many serious 

environmental problems. Pollution emissions have been increasing rapidly, which have seriously 

impacted the environmental quality and people's living. 

The fundamental reason that leads to the degradation of the environment quality is that we are in 

the pursuit of economic benefits while pollution emissions and environmental damage have been 

neglected. In the production process, attention has only been paid to the assessment of economic 

outputs while pollution emissions that damage the environment have not been included in the 

national input-output accounting system. Only by taking into account both energy consumption 

and bad pollution output and measuring environmental efficiency comprehensively, can we be 

able to measure the real economic efficiency more accurately and find out the relationship 

between environmental efficiency and economic growth.  

The remainder of the paper is organized as below. Section 2 is a literature review discussing 

environmental efficiency evaluation with the DEA model; Section 3 discusses the new approach 

of the extended SBM model with undesirable input and undesirable output for evaluating 

environmental efficiency. Section 4 evaluates the environmental efficiency using windows 

analysis of extended SBM model and tests the N-curve relationship between environmental 

efficiency and economic growth using various econometric models. Section 5 summarizes the 

results and puts forward some policy implications. 

2. LITERATURE REVIEW 

Environmental efficiency also called ecological efficiency and ecological-economy efficiency 

was proposed as a measure to reflect the environmental performance of economic activities 

(Schaltegger and Sturm, 1990). Environmental efficiency is defined as "the efficiency with 

which ecological resources are used to meet human needs" (OECD, 2008). It can be regarded as 

the ratio of economic output to input as well as environmental factors, which emphasizes 

coordinated green development by reducing the negative impact on the environment while 

producing economic value. 

The proposition of environmental efficiency provides a scientific criterion for the study of 

economic growth and environmental problems (Zhu et al., 2006), which has drawn widespread 

attention. In the early time, environmental efficiency was used to measure enterprise 

                                                             
1National Bureau Statistic of China: http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html 
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performance on the ecological environment (Kuosmanen et al., 2006). However, due to the 

external nature of environmental pollution, it is impossible to study and solve ecological 

problems focusing only on enterprises. Then, the study on environmental efficiency turned to 

industry, region and even country more and more (Kielenniva et al., 2012; Lorenzo-Toja et al., 

2015). 

How to quantitatively evaluate environmental efficiency is also the research focus. The basic 

method to measure efficiency is comparing the indicators of output and input. Because economic 

activities are often multi-factor inputs, and the form of outputs is also diversified, so the simple 

form of single output indicator divided by single input indicator cannot meet the real facts. 

Therefore, the multi-indicator approach is often used, mainly including three categories: The first 

one is to calculate the comprehensive index of environmental efficiency with an index system. 

The difficulty lies in how to select the indicators and set the weight for each indicator. The 

challenge is the subjectivity and randomness when constructing the index system. The second 

one involves the parameterized frontier analysis method, namely stochastic frontier analysis 

(SFA) proposed by Aigner et al. (1977). This kind of method can decompose the technical 

inefficiency from the stochastic residual of a regression, but it is necessary to define the specific 

form of a production function. Battese and Coelli(1992) proposed a stochastic frontier 

production function model for panel data. The third one is the data envelopment analysis (DEA), 

which is solved by linear programming to measure the relative efficiency of decision-making 

units (DMUs). It is suitable for multi-input and multi-output situations without a specific form of 

the production function. It was not until 1978 when Charnes et al. (1978) proposed the CCR 

model that the DEA method was formally proposed and widely used. 

As to evaluating environmental efficiency, some environmental indicators as bad outputs must 

also be considered, such as pollution emissions, which are important factors affecting 

environmental quality. In the existing studies, there are usually two ways to incorporate 

undesirable output into DEA model when evaluating environmental efficiency. The first one is to 

change the undesirable output to desirable output by indicators transformation with the 

traditional DEA model. Seiford and Zhu (2002) summarized four feasible solutions to this kind 

of method, each with its advantages and disadvantages. The second one is to assume that the 

undesirable output conforms to the weak free disposal, and to construct the corresponding set of 

environmental production possibilities. Färe and Grosskopf (2004), Tyteca (1997) separately 

proposed a non-linear Slack-Based Measure(SBM) model considering the undesirable output, 

which can measure both the increase of desirable output and the decrease of undesirable output 

(pollution emissions, etc). For the SBM model is good at dealing with pollution emissions, it has 

become the main method to evaluate environmental efficiency. 
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In terms of current research on evaluation of national environmental efficiency, Zhou and Ang 

(2008) proposed several non-radial evaluation models, using carbon dioxide as the undesirable 

product to measure the environmental efficiency of 21 OECD countries. Halkos and Petrou 

(2019) evaluated the environmental efficiency of 28 EU members. Dong et al. (2008) analyzed 

the efficiency of environmental governance in China from the perspective of international 

comparison. Shabani et al. (2015) proposed a DEA model that took into account inaccurate data, 

desirable and undesirable output to measure the environmental efficiency of 163 countries.  

As to regional environmental efficiency in China, Song and Wang (2014) used SBM model to 

calculate China's regional environmental efficiency from the perspective of technology 

development and government rules. Li and Chen(2008) estimated the provincial environmental 

efficiency in China from 1990 to 2006 with SBM model. It was found that the average efficiency 

score in China significantly reduced by introducing environmental indicators into the model and 

the central and western regions were more sensitive than that in eastern regions. Li et al. (2015) 

evaluated the environmental efficiency of 30 provinces in China from 2000 to 2010 based on the 

eco-efficient DEA model. Lu and Zhao (2016) used the proportional DEA model to calculate the 

environmental efficiency of China's provinces from 2005 to 2012. They all found that pollution 

emission significantly reduced the average efficiency score of each region, with the highest 

environmental efficiency in the western regions, the second in the eastern regions and the lowest 

in the central regions. Qu (2018) implied that there were significant regional differences in 

environmental efficiency in China. Environmental efficiency shows a gradient decreasing pattern 

of "East-Central-West-Northeast" and significant positive spatial correlation and agglomeration 

characteristics. The environmental efficiency of provinces and regions near the geographic area 

affects each other, and the spatial diffusion effect is significant.  

DEA model calculates the relative efficiency among units, but not the absolute score. Taken into 

account the change of technology, the static regional environmental efficiency comparison 

cannot reflect its dynamic change. To compare dynamically the environmental efficiency in 

different periods, Total Factor Productivity(FTP) or Malmquist index is widely used, with which 

change in environmental efficiency can be decomposed into a change in technological efficiency, 

technological progress, and change in scale efficiency. According to Yang(2009), the change in 

environmental efficiency mainly comes from Hicks’ neutral technological progress and the 

deterioration of relative environmental efficiency. Tang and Zhu(2012) found that the inter-

provincial environmental efficiency differences experienced a process of year-by-year decrease 

followed by year-by-year expansion. Li and Luo(2016) showed that there was absolute 

convergence of regional environmental efficiency in China, and there were obvious differences 

among the three regions of the eastern, the central and the western. 
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In summary, there are many studies on environmental efficiency in China with the Malmquist 

index method for dynamic analysis. However, the decomposition of the Malmquist index method 

is not a real technological progress, but a referential result and the decomposition results deviate 

from the real value. The window analysis approach of DEA model meets the needs for efficiency 

comparison in different periods and regions in case of environmental efficiency (Halkos and 

Tzeremes, 2009; Sueyoshi et al., 2013). Wang et al. (2013) analyzed the energy and 

environmental efficiency of 29 provinces in China from 2000 to 2008 and found that the 

efficiency of the three regions was rising and the highest was in the eastern regions. Halkos and 

Polemis(2018) studied the environmental efficiency of the electric power industry in the United 

States with different emission indicators and analyzed their impact on economic growth. 

However, there are few papers about regional environmental efficiency in China using the 

window analysis method of DEA model. 

3. METHODOLOGY AND DATA 

3.1 Extended SBM model 

The DEA model is a non-parametric mathematical programming approach considered to be an 

effective method for evaluating the efficiency of different decision-making units (DMUs). Based 

on the traditional CCR model (Charnes et al., 1978) or BCC model (Banker et al., 1984), both 

radial and non-radial inputs and outputs can be incorporated into the model to evaluate both 

desirable and undesirable outputs (Tone, 2004). Suppose there are n DMUs, denoted by DMUj 

(j=1,……,n). Let n, m, and k be the number of DMUs, inputs, and outputs, respectively, 
mX R n  

be the input matrix and 
kY R n  be the output matrix of the observed data. Then, the input matrix 

can be decomposed into a radial input matrix 1mRX R
n

  and a non-radial input matrix 2mNRX R n  

with 1 2m m m  . Correspondingly, the output matrix can be decomposed into a radial output 

matrix 1R R
k nY 

  and a non-radial output matrix 2NR Rk nY   with 1 2k k k  . They can be expressed 

as 
NRX=(X ,X )R T

and 
NR( , )R TY Y Y . Normally, input and output data sets are positive, so the 

production possibility set for a constant returns to scale formulation can be expressed as (Simar& 

Wilson, 2002): 

  P= , | , , 0x y x X y Y      

For a special  0 0 0 0 0 0 0DMU , = R NR R NRx y x x y y ( , , , ) P, we have： 

0

R R Rx s  =X
; 0

NR NR NRx s =X
; 0

R R Ry s  =Y
; 0

NR NR NRy s =Y
. 
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with 1, 1   , and , , , , 0R NR R NRs s s s      . The ,R NRs s 

 represent radial and non-radial 

input slacks vectors separately, and ,R NRs s 

 represent radial and non-radial output slacks 

vectors separately. Efficiency index can be defined as (Cooper et al., 2001): 
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where 1, 1   ，and all the slacks equal zero implies that DMU0 is DEA efficient. 

For a simple case, assuming we have n DMUs using m inputs 1[ , , ] m n

nX x x R    with a desirable 

and an undesirable output expressed by
1

1[ , , ]
k nG G G

nY y y R


   and 
2

1[ , , ]
k nB B B

nY y y R


   respectively, 

the production possibility set is presented as follows with , , 0G BX Y Y  : 

     P= , , | , , , 0G B G G B Bx y y x X y Y y Y        

So, the SBM model for environmental efficiency can be expressed as (Halkos and Polemis, 

2018): 
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s.t. 
0x X s   ;

0

G G Gy Y s    ; 
0

B B By Y s   ; 0, 0, 0, 0G Bs s s        

with 1 2, ,k kG Bs s R s R     representing slacks for inputs, desirable outputs, and undesirable outputs, 

respectively. 

Furthermore, we are considering undesirable input. Although the increase of both the desirable 

input and the undesirable input will reduce the efficiency when the output is constant, they play 

different roles in the process of production. For example, capital and labor are necessary for 

production as desirable input, and they get profit or salary in income redistribution. Part of the 

final products can be transformed into capital and labor again as inputs in the next production 

stage. The undesirable input, one the other way, is permanent consumption in production, and its 
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consumption should be reduced as much as possible. The energy consumption in the production 

process can be considered as undesirable input. Here we extend the SBM model with undesirable 

input as the following form: 

1 2

1 2

1 1
1 2 0 0*

1 1
1 2 0 0

1
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                                   （3） 

s.t. 0

R R Dx X s   ; 0

NR NR Nx X s   ; 0

G G Gy Y s   ; 0

B B By Y s   ; 0, 0, 0, 0, 0D N G Bs s s s          

with
1 2,m mD Ns R s R    representing slacks for desirable inputs and undesirable inputs, and 

1 2,k kG Bs R s R   representing slacks for desirable outputs and undesirable outputs, respectively. 

3.2 Windows analysis approach 

DEA window analysis introduced by (Charnes et al., 1984) is a variation of the traditional DEA 

approach that can handle cross-sectional and time-varying data to measure the dynamic 

efficiency of DMUs with panel data. It operates on the principle of moving averages and 

establishes efficiency measures by treating each DMU in different periods as a sole unit. Under 

the window analysis framework, the efficiency score of a unit in a period can be contrasted to the 

others as well as to its own in other periods. So we can apply this approach to explore the 

environmental efficiency of different regions in different periods through a sequence of 

overlapping windows. 

Assuming there are N DMUs with γ inputs and δ outputs in T time periods（t=1,…,T）, so there 

are samples of N T . Then DMU0 has inputs vector of 1

0 0 0( , , )t t mt Tx x x  and outputs vector of 

1

0 0 0( , , )t t kt Ty y y  in period t. If the start point of the widow is v such that (1 ≤ v ≤ T) and width 

of the widow is w such that (1 ≤ w ≤ T − v)，inputs vector and outputs vector will be： 

1

1

v v

N

vw

v w v w

N

x x

x

x x 

 
 

  
 
 
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1
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v v
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y y

y
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For the efficiency estimation changes through time, DEA window analysis is applied to rely on 

the idea of a moving average of appropriate width. In this paper, we have 30 provinces (N=30) 
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over 13 years (t=2005,…,2017) and with the imposition of a 3-year window(w=3). We assume 

that there was no technical change within each of the same widows and all DMUs in each 

window can be compared against each other, so a narrow window width should be chosen and 

each DMU placed in the same window can be treated as different.  

Therefore, the first window contains the years of 2005, 2006 and 2007, the second window 

contains the years of 2006, 2007 and 2008, and the last window contains years of 2015, 2016 and 

2017. We have 990 different DMUs ( 30 3 11  ) in total. 

3.3  Environmental Kuznets Curve (EKC) 

To capture the impact of economic growth on environmental efficiency, we can use different 

econometric models. The inverted U-shaped curve named after Kuznets(1955) explains that 

income inequality rises and falls according to economic development. The Environmental 

Kuznets Curve(EKC) postulates an inverted U-shaped function relationship between different 

pollution missions and per capita income, i.e. Environmental pressure increases up to a certain 

level as income goes up, then it decreases (Grossman and Krueger, 1995). Many existing studies 

also focus on the examination of the relationship between environmental efficiency and 

economic growth (Zaim and Taskin, 2000; Managi, 2006; Jayanthakumaran and Liu, 2012). 

Following the above papers, we use a cubic specification of the following form based on EKC: 

2 3

1 2 3it i t it it it itEF b GDPP b GDPP b GDPP          (i=1,2,…,30; t=1,2,…,13)          （4） 

where EF is a vector that includes environmental efficiency scores, GDPP is real GDP per capita 

(in constant 2000 prices), i for province and t for the period. The parameters αi and β
t
are 

individual and time fixed effects used to capture common factors across the cross-section 

element, and εit are zero mean i.i.d. In the processing, we use fixed-effect and random-effect 

respectively on whether the individual effect is related to independent variables and then choose 

which model is better decided by Hausman test.  

Considering the endogeneity of the independent variable GDPP, an OLS estimator may be biased 

(Hausman and Ros, 2013), and cannot reflect the impact of economic growth on environmental 

efficiency. To deal with this kind of possible problem, it is feasible to estimate the model by 

applying two dynamic GMM estimators known as DIF-GMM (Arellano and Bond, 1991) and 

SYS-GMM (Blundell and Bond, 1998). In these models, we use investment intensity of 

environmental governance, the ratio of environmental investment on GDP, as an instrument 

variable. 
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3.4 Panel Tobit Model 

The maximum score of environmental efficiency estimated by DEA model (Non-Super DEA 

model) is 1 for the DMUs which are considered DEA efficient, so the scores for all DMUs range 

from 0 to 1. Since the dependent variable in Equation 4, environmental efficiency score, is a 

random variable with values that fall between 0 and 1, it is more suitable to use the following 

Panel Tobit model for the censored dependent variable(Tobin,1956;Maddala,1987;Baltagi, 

2008): 

* 2 3

1 2 3it i t it it it itEF b GDPP b GDPP b GDPP          (i=1,2,…,30; t=1,2,…,13)          （5） 

where 𝐸𝐹𝑖𝑡 = 0          𝑖𝑓    𝐸𝐹𝑖𝑡
∗ ≤ 0  

  𝐸𝐹𝑖𝑡 = 𝐸𝐹𝑖𝑡
∗     𝑖𝑓     0 < 𝐸𝐹𝑖𝑡

∗ < 1 

      𝐸𝐹𝑖𝑡 = 1          𝑖𝑓    𝐸𝐹𝑖𝑡
∗ ≥ 1 

3.5 Indicators and Data 

Capital stock and labor force are two desirable inputs. As to capital stock, for there are no data 

published by the national statistical bureau of china, a common method is used to estimate data 

using the following equation: 𝐾𝑡 = (1 − 𝛿)𝐾𝑡−1 + 𝐼𝑡/𝑃𝑡, where 𝐾𝑡 is capital stock in period t, 

𝐾𝑡−1 is the capital stock of the previous year, 𝛿 is depreciation rate, I is fixed capital investment, 

and P is price index of fixed capital investment. Following Shan(2008), we obtain the initial data 

of capital stock and average depreciation rate of 10.96%, then calculate the capital stock from 

2000 to 2017 with the new dataset from the statistical bureau of China. The number of labor in 

the middle of the year is used as labor input, which equals the average number of employed 

persons at the beginning and the end of the year. Energy consumption is considered as 

undesirable inputs, and all types of energy consumption are converted to standard coal 

consumption in the same unit. 

Gross domestic product (GDP) at the price of 2000 is desirable output, as many other studies do. 

We use pollution missions as undesirable outputs, including sulfur dioxide(SO2) emissions as air 

pollution and chemical oxygen demand (COD) as water pollution. Although carbon dioxide 

(CO2) is not a pollution emission in a strict sense, as a greenhouse gas which mainly affects 

climate change, its impact on the environment is becoming more and more obvious, and it is also 

the main indicator of energy consumption, emission reduction, and environmental management 

in many countries. Therefore, carbon dioxide (CO2) is also regarded as one kind of undesirable 

outputs in this paper. Without the data of CO2 emissions of each province in the statistical 
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yearbook, we estimate the data from the amounts of fossil energy consumption, e.g., coal, oil, 

and natural gas by following Liu et al.(2010). Table 1 presents the summary statistics of input 

and output variables of 30 provinces of China from 2000 to 2017. As we can see, from the 

relative values of the skewness and kurtosis, the variables do not follow the normal distribution.  

Table 1: Descriptive statistics of variables. 

Statistical 

measures 

Desirable 

Inputs 

Undesirable 

Inputs 

Desirable 

outputs 

Undesirable 

outputs 

Dependent 

variable 

Instrument 

variable 

Capital 

Stock 
Labor Energy GDP SO2 COD CO2 

Real 

GDP/capita 

Investment 

intensity 

Units 
RMB 

Billion 
Million Million Ton 

RMB 

Trillion 
Mt Mt Mt RMB % 

Observations 390 390 390 390 390 390 390 390 390 

Mean 889.8 15.24 126.0 1.206 0.679 0.56 328.13 27420 17.29 

Median 572.0 11.59 104.0 0.916 0.573 0.46 257.49 22966 13.22 

Standard 

deviation 
915.2 11.96 

80.0 
1.073 0.437 0.40 254.63 17004 16.17 

Maximum 4750.8 58.69 389.0 6.204 2.002 1.98 1754.37 95599 63.7 

Minimum 23.7 1.05 8.2 0.047 0.014 0.06 16.74 4216 0.8 

Skewness 1.83 1.41 1.02 1.89 0.61 1.12 1.83 1.33 3.13 

Kurtosis 3.65 1.72 0.57 4.26 -0.38 0.90 4.79 1.72 14.67 

Date source: data.stats.gov.cn 

 

4. RESULT AND DISCUSSION 

4.1 Provincial environmental efficiency score 

We first use the extended SBM model to compute the efficiency score of 30 provinces in China. 

The DEA window analysis is then applied and Beijing is taken as an example in Table 2. The 

calculations for the other 29 provinces are similar and are omitted here. Through the sequence of 

11 overlapping windows from 2005 to 20017, we can explore the evolution of environmental 

efficiency for each province of China. Viewing the column data of Table 2, we can test the 

stability of the environmental efficiency score for each province across the different datasets. 

And the row data enable us to examine the trends across the same dataset. According to the last 

row of Table 2, we can see that Beijing experienced an improvement in its environmental 

efficiency score from 2005 to 2017 while it fluctuated during 2010 and 2015. 

 

 

 

 



International Journal of Agriculture and Environmental Research 

ISSN: 2455-6939 

Volume: 06, Issue: 03 "May-June 2020" 

 

www.ijaer.in Copyright © IJAER 2020, All rights reserved Page 487 

 

Table 2: A three-year window analysis of environmental  

efficiency of an example of Beijing. 

Window/Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Window 1 0.821  0.910  1.000  

        
  

Window 2 

 

0.805  0.899  1.000  

       
  

Window 3 

  

0.797  0.898  1.000  

      
  

Window 4 

   

0.841  0.937  1.000  

     
  

Window 5 

    

0.937  1.000  1.000  

    
  

Window 6 

     

1.000  0.961  1.000  

   
  

Window 7 

      

0.926  0.959  1.000  

  
  

Window 8 

       

0.933  0.975  1.000  

 
  

Window 9 

        

0.947  0.978  1.000  
  

Window 10 

        
 

0.798 0.830 1.000  

Window 11 

         
 

0.791  0.919 1.000  

Average 0.821  0.858  0.899  0.913  0.958  1.000  0.962  0.964  0.974  0.926  0.873  0.960  1.000  

 

Table 3 presents the results of the provincial environmental efficiency score derived from the 

extended SBM model broken down by three pollution models (SO2, COD, CO2), and Table 4 

presents another situation of two pollution models (SO2, COD). The results reveal that in all of 

the specifications, 5 out of 30 provinces (Liaoning, Fujian, Hainan, Yunnan, and Qinghai) are 

reported to be DEA efficient or near efficient in terms of the pollution emissions since their 

scores are 1 or close to 1. The environmental efficiency scores of 9 more developed provinces 

(Beijing, Tianjin, Shanghai, Zhejiang, Anhui, Shandong, Guangdong, Chongqing, and Sichuan) 

were increasing before 2010 then fluctuated close to 1 in recent years. On the other hand, 6 

provinces (Shanxi, Inner Mongolia, Guizhou, Shaanxi, Gansu, and Xinjiang) report the lowest 

efficiency scores below 0.4 in many years. 

The descriptive statistics reveal that the environmental efficiency scores of economically 

developed provinces are often higher than those of less developed provinces, but there is no 

absolute regional distribution property because the provinces with the highest score locate 

everywhere. Although most of the central and western provinces had lower scores, there are also 

provinces with higher scores, such as Chongqing, Sichuan, and Yunnan. It is shown that there 

are high disparities of scores among different provinces since the standard deviation and the 

coefficient of variation (CV) appear to be relatively high over 0.2 and 0.3 respectively. It is 

worth mentioning that similar results are obtained in the two specifications in Table 3 and Table 

4. 

In terms of the time series analysis, the average annual scores of each province reveal a general 
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improvement for most cases and a slight decline for a few cases (Jilin, Ningxia, and Xinjiang). 

Some provinces had a significant increase in the past 13 years, especially Sichuan, Hunan, 

Henan and Shandong had doubled their scores in table 3. A similar situation occurred in table 4. 

The increasing of the score and the decline of the coefficient of variation (CV) can indicate two 

findings, one is the improvement of provincial environmental efficiency overall, another is that 

the disparities of environmental efficiency of each province have been shrinking, showing a 

convergence trend. 

Table 3: Environmental efficiency scores with three undesirable  

outputs (SO2, COD, and CO2). 

provinces 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

Beijing 0.82  0.86  0.90  0.91  0.96  1.00  0.96  0.96  0.97  0.93  0.87  0.96  1.00  0.93  

Tianjin 0.90  0.88  0.88  0.95  1.00  1.00  1.00  1.00  1.00  0.91  0.87  1.00  1.00  0.95  

Hebei 0.35  0.34  0.33  0.37  0.55  0.61  0.62  0.61  0.64  0.64  0.60  0.59  0.62  0.53  

Liaoning 1.00  0.95  1.00  0.91  0.96  1.00  1.00  1.00  1.00  0.98  0.92  0.95  1.00  0.97  

Jilin 0.53  0.48  0.43  0.44  0.56  0.55  0.53  0.54  0.52  0.48  0.46  0.48  0.48  0.50  

Heilongjiang 0.62  0.60  0.57  0.58  0.69  0.73  0.67  0.67  0.68  0.68  0.71  0.78  0.79  0.67  

Shanghai 0.78  0.81  0.84  0.81  0.85  1.00  0.94  0.94  0.92  0.85  0.78  0.92  1.00  0.88  

Jiangsu 0.60  0.60  0.60  0.61  0.69  0.70  0.69  0.77  0.88  0.81  0.81  0.88  0.95  0.74  

Zhejiang 0.66  0.65  0.65  0.66  0.73  0.78  0.73  0.78  0.88  0.84  0.78  0.90  1.00  0.77  

Fujian 1.00  1.00  0.95  1.00  0.97  1.00  0.98  0.99  0.99  0.95  0.96  1.00  1.00  0.98  

Shandong 0.50  0.50  0.63  0.66  0.81  1.00  0.69  0.80  0.97  0.92  0.94  1.00  1.00  0.80  

Guangdong 0.84  0.82  0.84  1.00  1.00  1.00  1.00  1.00  1.00  0.99  1.00  1.00  1.00  0.96  

Hainan 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  0.97  1.00  1.00  1.00  

East Mean 0.74  0.73  0.74  0.76  0.83  0.87  0.83  0.85  0.88  0.84  0.82  0.88  0.91  0.82  

Shanxi 0.38  0.36  0.32  0.34  0.41  0.42  0.42  0.42  0.43  0.41  0.38  0.37  0.38  0.39  

Anhui 0.57  0.53  0.52  0.55  0.81  0.85  0.87  0.89  0.92  0.87  0.78  0.84  1.00  0.77  

Jiangxi 0.25  0.23  0.21  0.23  0.34  0.35  0.33  0.33  0.32  0.32  0.30  0.30  0.30  0.29  

Henan 0.27  0.26  0.26  0.29  0.53  0.55  0.50  0.50  0.51  0.50  0.48  0.59  0.63  0.45  

Hubei 0.40  0.38  0.38  0.42  0.57  0.59  0.56  0.56  0.55  0.50  0.47  0.53  0.56  0.50  

Hunan 0.38  0.37  0.35  0.41  0.64  0.66  0.63  0.65  0.68  0.65  0.62  0.78  0.88  0.59  

Center Mean 0.38  0.35  0.34  0.37  0.55  0.57  0.55  0.56  0.57  0.54  0.51  0.57  0.62  0.50  

Inner Mongolia 0.35  0.32  0.30  0.35  0.45  0.45  0.44  0.42  0.38  0.35  0.34  0.37  0.38  0.38  

Guangxi 0.40  0.38  0.34  0.37  0.53  0.50  0.51  0.51  0.53  0.51  0.48  0.49  0.50  0.47  

Chongqing 0.55  0.54  0.54  0.59  0.80  0.86  0.83  0.89  0.95  0.88  0.80  0.93  1.00  0.78  

Sichuan 0.41  0.41  0.41  0.47  0.63  0.70  0.77  0.82  0.81  0.79  0.83  0.92  1.00  0.69  

Guizhou 0.29  0.27  0.24  0.26  0.45  0.45  0.44  0.43  0.43  0.41  0.38  0.34  0.33  0.36  

Yunnan 1.00  0.99  0.96  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Shaanxi 0.28  0.26  0.24  0.27  0.39  0.39  0.39  0.40  0.39  0.37  0.36  0.37  0.37  0.34  

Gansu 0.26  0.24  0.22  0.24  0.38  0.38  0.36  0.37  0.37  0.35  0.33  0.32  0.32  0.32  

Qinghai 1.00  1.00  0.94  1.00  1.00  1.00  0.88  0.91  1.00  1.00  1.00  1.00  1.00  0.98  
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Ningxia 1.00  0.74  0.63  0.57  0.68  0.63  0.56  0.57  0.60  0.61  0.59  0.58  0.56  0.64  

Xinjiang 0.43  0.39  0.35  0.35  0.41  0.42  0.42  0.42  0.42  0.41  0.39  0.37  0.34  0.39  

West Mean 0.54  0.50  0.47  0.50  0.61  0.62  0.60  0.61  0.62  0.61  0.59  0.61  0.62  0.58  

Mean 0.59  0.57  0.56  0.59  0.69  0.72  0.69  0.71  0.72  0.70  0.67  0.72  0.75  0.67 

CV 0.46  0.47  0.49  0.47  0.32  0.33  0.33  0.33  0.34  0.35  0.36  0.37  0.38  0.36 

 

Table 4: Environmental efficiency scores with two undesirable outputs (SO2, COD). 

provinces 
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

Beijing 0.78  0.84  0.89  0.91  0.95  1.00  0.95  0.96  0.97  0.80  0.62  0.90  1.00  0.89  

Tianjin 0.89  0.87  0.88  0.95  0.97  1.00  1.00  1.00  1.00  0.90  0.84  1.00  1.00  0.95  

Hebei 0.36  0.34  0.34  0.38  0.57  0.63  0.62  0.62  0.64  0.63  0.59  0.58  0.61  0.53  

Liaoning 1.00  0.94  1.00  0.90  0.95  1.00  1.00  1.00  1.00  0.97  0.90  0.94  1.00  0.97  

Jilin 0.52  0.46  0.42  0.43  0.54  0.52  0.50  0.51  0.49  0.46  0.43  0.46  0.46  0.48  

Heilongjiang 0.62  0.59  0.57  0.58  0.68  0.73  0.65  0.66  0.67  0.65  0.67  0.75  0.76  0.66  

Shanghai 0.77  0.80  0.83  0.80  0.84  1.00  0.95  0.94  0.93  0.84  0.77  0.90  1.00  0.87  

Jiangsu 0.60  0.60  0.61  0.62  0.69  0.72  0.70  0.79  0.88  0.84  0.80  0.88  0.95  0.74  

Zhejiang 0.66  0.65  0.67  0.67  0.75  0.80  0.74  0.80  0.88  0.82  0.74  0.90  1.00  0.77  

Fujian 0.84  0.81  0.81  0.82  0.96  1.00  0.97  0.96  0.99  0.91  0.79  0.94  1.00  0.91  

Shandong 0.51  0.52  0.65  0.67  0.83  1.00  0.69  0.81  0.96  0.90  0.92  1.00  1.00  0.80  

Guangdong 0.81  0.80  0.82  0.90  0.94  1.00  1.00  1.00  1.00  0.99  1.00  1.00  1.00  0.94  

Hainan 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  0.99  0.96  1.00  1.00  1.00  

East Mean 0.72  0.71  0.73  0.74  0.82  0.88  0.83  0.85  0.88  0.82  0.77  0.87  0.91  0.81  

Shanxi 0.39  0.37  0.34  0.35  0.42  0.43  0.43  0.44  0.45  0.42  0.39  0.38  0.39  0.40  

Anhui 0.57  0.52  0.53  0.55  0.82  0.86  0.88  0.90  0.93  0.86  0.75  0.83  1.00  0.77  

Jiangxi 0.22  0.20  0.19  0.21  0.30  0.30  0.29  0.30  0.30  0.29  0.28  0.28  0.28  0.27  

Henan 0.26  0.25  0.25  0.29  0.52  0.53  0.48  0.49  0.50  0.48  0.46  0.59  0.64  0.44  

Hubei 0.39  0.37  0.37  0.41  0.56  0.59  0.56  0.57  0.55  0.48  0.43  0.50  0.55  0.49  

Hunan 0.35  0.34  0.32  0.36  0.58  0.60  0.61  0.63  0.64  0.59  0.53  0.69  0.83  0.54  

Center Mean 0.36  0.34  0.33  0.36  0.53  0.55  0.54  0.55  0.56  0.52  0.47  0.55  0.62  0.48  

Inner Mongolia 0.34  0.32  0.30  0.35  0.45  0.45  0.43  0.41  0.37  0.34  0.33  0.37  0.38  0.37  

Guangxi 0.33  0.31  0.26  0.27  0.45  0.44  0.49  0.50  0.51  0.48  0.44  0.46  0.47  0.42  

Chongqing 0.45  0.46  0.42  0.46  0.69  0.73  0.74  0.83  0.95  0.85  0.72  0.62  0.63  0.66  

Sichuan 0.35  0.34  0.35  0.38  0.58  0.62  0.69  0.75  0.76  0.72  0.65  0.68  0.77  0.59  

Guizhou 0.29  0.27  0.24  0.26  0.45  0.45  0.45  0.44  0.44  0.41  0.38  0.33  0.33  0.37  

Yunnan 1.00  0.99  0.97  1.00  1.00  1.00  1.00  1.00  1.00  0.99  1.00  1.00  1.00  1.00  

Shaanxi 0.27  0.25  0.23  0.26  0.37  0.37  0.36  0.38  0.37  0.35  0.35  0.37  0.37  0.33  

Gansu 0.26  0.24  0.22  0.24  0.37  0.37  0.35  0.36  0.36  0.34  0.32  0.32  0.31  0.31  

Qinghai 1.00  1.00  0.95  1.00  1.00  0.94  0.87  0.91  1.00  1.00  1.00  1.00  1.00  0.97  

Ningxia 1.00  0.74  0.63  0.58  0.68  0.63  0.57  0.57  0.62  0.62  0.60  0.59  0.58  0.65  

Xinjiang 0.42  0.38  0.34  0.35  0.41  0.42  0.41  0.41  0.42  0.40  0.39  0.37  0.34  0.39  

West Mean 0.52  0.48  0.45  0.47  0.59  0.58  0.58  0.60  0.62  0.59  0.56  0.56  0.56  0.55  

Mean 0.57  0.55  0.55  0.57  0.68  0.70  0.68  0.70  0.72  0.68  0.63  0.69  0.72  0.65 
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CV 0.47  0.48  0.50  0.48  0.33  0.35  0.34  0.34  0.35  0.35  0.37  0.37  0.38  0.37 

 

When comparing the specification of three undesirable outputs (Table 3) to two undesirable 

outputs (Table 4), the environmental efficiency scores of each province seem very similar except 

for a few provinces. There are two opposed situations: one is that the scores in the model of three 

undesirable outputs are lower, mainly in 4 provinces of Hebei, Shanxi, Jiangsu, and Zhejiang, 

but the difference is small; the other one is that the scores in the model of three undesirable 

outputs are higher, mainly in5 provinces of Fujian, Hunan, Guangxi, Chongqing, and Sichuan, 

and the difference is relatively larger. The reason for the score gap is the difference in energy 

consumption and carbon emissions among provinces. Compared with sulfur dioxide and other 

pollution emissions, the provinces with relatively high carbon emissions get a greater negative 

impact on environmental efficiency in the first case, which leads to lower scores, and vice versa. 

4.2 Test on the impact of economic growth on environmental efficiency 

To model the relationship between the environmental efficiency and economic growth with 

various econometric methods, we defined environmental efficiency scores as dependent variable 

(EFSCC) in the first situation of three undesirable outputs and EFSC in the second situation of 

two undesirable outputs. Then the gross domestic product per capita (GDPP) and its extra 

polynomial terms (e.g. GDPP squared and GDPP cubed) are used as independent variables.  

The unit root test is carried out for each variable. As to the dependent variables of EFSCC and 

EFSC, the original variables are tested with the intercept term. The LLC test with the same unit 

root and Fisher-ADF test with different unit root show the similar results of rejecting the 

assumption that there is a unit root. Hence, the two variables are stationary. As to the 

independent variable of GDPP, the original variable is tested with the intercept term and slope. 

The tests of LLC and Fisher-ADF indicate that there is no unit root. So, the parameters of the 

equation 4 and equation 5 can be estimated without the cointegration test.  

Firstly, we estimate the cubic equation with a panel data model using STATA for fixed effects 

and random effects respectively. We end up choosing the random effects model justified by the 

Hausman test to the results for the different dependent variables of EFSCC and EFSC shown in 

Table 5 under Model I. We find significant evidence consistent with an N-shaped relationship 

between environmental efficiency score and economic growth. More specifically, the 

coefficients on the GDPP terms (i.e.GDPP, GDPP squared and GDPP cubed) for two dependent 

variables (EFSCC and EFSC) are statistically significant alternating their signs starting from 

positive to negative. This suggests the existence of an N-shaped curve. It is worth mentioning 

that the existence of non-linear effects generated by a cubic and not a quadratic specification is 

justified under the Wald test, which tests the restrictions that the extra polynomial terms (e.g. 
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GDPP squared and GDPP cubed) are zero (H0: b2 =b3 = 0). The result of F test and χ2 test all 

reject the null hypothesis under which the restricted model is nested to the unrestricted one 

(third-degree polynomial model). 

Table 5: Results of econometric analysis. 

Model 
Model I CUBIC Model II DIF-GMM Model III SYS-GMM Model IV Tobit 

Dependent 

variable 
EFSCC EFSC EFSCC EFSC EFSCC EFSC EFSCC EFSC 

Constant 
0.422 

(8.94)*** 

0.410 

(8.65)*** 

0.259 

(6.89)*** 

0.270 

(7.60)*** 

0.164 

(5.66)*** 

0.122 

(4.17)*** 

0.412 

(7.82)*** 

0.409 

(7.96)*** 

GDPP 
1.39E-02 

(5.89) *** 

1.39E-02 

(5.72) *** 

7.48E-03 

(3.58)*** 

7.28E-03 

(3.22)*** 

6.80E-03 

(3.10)*** 

6.87E-03 

(3.33)*** 

1.54E-02 

(5.44) *** 

1.43E-02 

(5.10) *** 

GDPP^2 
-1.67E-5 

(-2.71) *** 

-1.76E-5 

(-2.78) *** 

-1.16E-4 

(-2.13)** 

-1.22E-4 

(-2.1)** 

-1.49E-4 

(-2.62)*** 

-1.55E-4 

(-2.89)*** 

-1.86E-4 

(-2.42)** 

-1.76E-4 

(-4.24)** 

GDPP^3 
7.33E-10 

(1.61) ** 

8.16E-10 

(1.75) ** 

7.54E-10 

(1.89)* 

8.31E-10 

(1.96)** 

1.16E-9 

(2.76)*** 

1.20E-9 

(3.03)*** 

8.84E-10 

(1.57)* 

8.61E-10 

(1.55)* 

DF(-1) 
 

 
0.499 

(9.6)*** 

0.416 

(7.59)*** 

0.644 

(18.43)*** 

0.720 

(19.59)***   

Observations 390 390 330 330 360 360 390 390 

 
Rho Instruments Instruments Rho 

 
0.876 0.868 136 136 158 158 0.871 0.858 

 
Hausman test Sargantest Sargan test LR 

 
0.128 0.152 216.0*** 251.0*** 429.2*** 357.6*** 206.6*** 218.4*** 

Note: Significance test t in parentheses; Significant at ***1%, **5% and *10% respectively. 

The estimated equations in the cubic specifications appear to be performing well under the t 

tests. However, the probability of existence of autocorrelation reveals that the error terms in the 

model are not i.i.d, leading to the serial dependence of errors. To avoid the influence of 

autocorrelation on the unbiasedness of estimated parameters, the difference generalized method 

of moments (DIF-GMM) is used to estimate parameters. According to the significance of the t-

test, the first-order difference of dependent variables is selected, and the first, second and third 

terms of independent variables are preserved. The results are shown in model II in Table 5. The 

empirical evidence in favor of an N-shaped curve does not dramatically change when employing 

a dynamic panel data analysis. More specifically, the income polynomial coefficients (i.e. GDPP, 

GDPP squared) are statistically different from zero at the p < 0.01 level of significance for the 

two dependent variables and the coefficients of GDPP cubed are statistically different from zero 

at the p < 0.05 level of significance. As to the values of the estimated parameters, b1s and b3s are 

positive while b2s are negative (alternating signs) suggesting the existence of a stable N-shaped 

relationship between environmental efficiency and economic growth. Additionally, the lagged 

efficiency score indicators of DF(-1) are significant at the 1% level in nearly all cases and their 
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high magnitude implies the suitability of the dynamic panel data estimation. 

In cases where the lagged dependent variables are poor instruments for the first-differenced 

regression improving the accuracy of the estimates dramatically in the DIF-GMM model, the 

SYS-GMM estimator should be employed for this reason, and the results are reported as model 

III in Table 5. As we can see, the results support the previous empirical findings leading to the 

confirmation of an N-shaped relationship. The income polynomial coefficients (i.e. GDPP, 

GDPP squared and GDPP cubed) are statistically different from zero at the p < 0.01 level of 

significance in the two situations of (EFSCC and EFSC). 

Since the environmental efficiency score is in the specific range of 0 to 1, the truncated 

dependent variable model (Tobit model) is used to re-estimate the parameters. Since the 

parameters estimated from the fixed effect of the panel data model of the truncated dependent 

variable may be biased and invalid, the random effect model is used here, and the results are 

reported in model IV in Table 5. As can be seen, similar to the results of the above models, all 

the coefficients are statistically different from zero, and the value of coefficients are close to 

those of model I respectively, which dedicated the N-shaped curve reflecting the relationship 

between environmental efficiency score and economic growth again. 

The above results estimated by different econometric models consistently show an N-shaped 

curve reflecting the relationship between environmental efficiency and economic growth. There 

are many possible reasons for this phenomenon. The most plausible explanation is that in the 

early stage of economic development, the underdeveloped areas absorbed ‘dirty industries’ 

because of their low technology level and lack of capital, and became ‘pollution paradise’, which 

had a greater impact on the environment and a naturally lower environmental efficiency. With 

the improvement of economic and technology, experience accumulated in environmental 

governance and environmental efficiency improved. However, at a certain stage of economic 

growth, adjustment of industrial structures and capital accumulation began to appear. Under the 

effect of a significant increase in capital input, economic efficiency and environmental efficiency 

would decline. Eventually, industrial upgrading and rising technology along with the 

improvement of environmental governance will ultimately improve environmental efficiency, 

and completed the internalization of external pollution, thus showing an N-shaped curve 

reflecting the relationship between environmental efficiency and economic growth. 

5. BRIEF CONCLUSIONS AND POLICY IMPLICATIONS 

This paper uses the extended SBM model to measure the provincial environmental efficiency 

score including desirable and undesirable inputs-output in the window analysis framework. The 

results show that the environmental efficiency score of each province exhibits a strong 
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relationship with economic growth. It has the property of general ascent and regional 

convergence. Then, the N-shape curve reflecting the relationship between environmental 

efficiency and economic growth is analyzed by using a variety of econometric models, including 

panel data model, GMM model, and panel Tobit model. The conclusions obtained by various 

methods are consistent, and the results are robust. 

Based on the results, we believe that it is necessary to strengthen environmental management and 

take improving environmental efficiency as an important part of environmental protection. 

Firstly, it is very important to apply environmental efficiency. We should not only consider the 

higher requirements for the environment, but also the reality of the economic development stage 

and the upgrading and transformation of industrial structure. It is necessary to understand the 

dynamic relationship between economic growth and environmental protection and implement the 

improvement of environmental efficiency into environmental protection. Secondly, it is time to 

improve the working mechanism of environmental protection. Aiming at improving 

environmental efficiency, we should improve various environmental protection mechanisms. For 

different provinces in the east, central and western regions, for developed and underdeveloped 

provinces, different environmental rules and measures should be adopted according to the 

specific conditions of economy, industry, and ecology, to avoid the wholly same kinds of 

environmental protection. At last, it is necessary to apply the evaluation of environmental 

efficiency in environmental protection. We can find out the law of environmental efficiency 

change, and formulate scientific environmental protection policies according to key information 

such as inflection point and vertex according to the EKC. 
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