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ABSTRACT 

This research paper offers an extensive examination of diverse methodologies and computational 

approaches designed to identify deficiencies in critical plant nutrients, encompassing nitrogen, 

phosphorus, potassium, zinc, boron, sulfur, and iron. It systematically analyzes the diverse 

methodologies and strategies proposed by scholars, assessing their effectiveness, constraints, and 

precision. Plants demand 13 essential mineral nutrients for optimal growth, and any insufficiency 

or excess of these nutrients can critically disrupt growth or lead to plant mortality. Consequently, 

the establishment of a continuous monitoring system to oversee nutrient levels is imperative for 

the enhancement of crop yield and quality. Through diagnostic systems that utilize digital image 

processing, computer vision, machine learning, and deep learning frameworks (such as pre-trained 

Convolutional Neural Network models like InceptionV3, VGG16, VGG19, ResNet50, and 

ResNet152, along with Support Vector Machines), nutrient deficiencies can be detected 

significantly earlier than through manual methods, thereby allowing farmers to implement timely 

corrective actions. This article assesses the efficiency of these sophisticated methods in addressing 

the diagnosis of deficiencies in plant nutrients. 

Keywords: Nutrition deficiency symptoms, Image processing, Machine learning, Deep Learning, 

YOLOs 
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1. INTRODUCTION 

The agricultural system is significantly dependent on a sufficient availability of water, sunlight, 

and the effective absorption of nutrients by plants. For plants to thrive, proper nutrition is essential. 

A balanced supply of all necessary nutrients in the correct proportions is crucial for healthy plant 

growth. For optimal growth and sustainability, vegetation requires a complete set of thirteen 

essential mineral nutrients. These plant nutrients are systematically organized into two essential 

classifications: macronutrients and micronutrients. Macro nutrients (calcium, nitrogen, potassium, 

magnesium, Sulphur and phosphorus) are those substances that are needed in relatively ample 

quantities. Micro nutrients (boron, manganese, iron, copper, zinc, chlorine) are required in minimal 

quantities.  

Plant Indicators of Nutrient Deficiencies 

Crop growth is influenced by various factors and represents the desired results for farmers. The 

process of growing crops reflects these influences and aligns with the grower's intended outcomes. 

Therefore, a careful study of a plant's growth can help identify specific nutrient deficiencies. When 

a plant is poor of a certain nutrient, distinctive symptoms may manifest. The lack of a nutrient does 

not directly cause symptoms. Instead, the normal physiological processes of the plant become 

disrupted, resulting in an accumulation of certain intermediate organic compounds while others 

become deficient. This imbalance leads to the unusual conditions recognized as symptoms. The 

visual diagnosis of nutrient deficiency should be utilized exclusively as a complementary strategy 

alongside alternative diagnostic approaches (e.g., soil and plant analysis). Nutrient deficiency 

symptoms can be categorized as follows: 

1. Yield letdown during sprout growth or severely stunted plants. 

2. Seasonal leaf symptoms and internal issues like clogged conductive tissues. 

3. Delayed or abnormal plant maturity. 

4. Visible or experimentally detected yield differences. 

5. Poor crop quality, including protein, oil, starch, or storage issues. 

Each symptom must be associated with a specific function of the nutrient within the plant. A 

particular nutrient may serve multiple functions, thereby complicating the elucidation of the 

physiological basis for a specific deficiency symptom. For instance, in instances of nitrogen 

deficiency, the foliage of the majority of plants exhibits a pale green or light-yellow coloration. 

When the availability of nitrogen is constrained, there is a diminution in chlorophyll synthesis, 

resulting in the prominence of yellow pigments, specifically carotene and xanthophyll, which 

manifest through various nutrient deficiencies, such as pale green or yellow leaves; furthermore, 

the deficiency must be correlated to a distinct leaf pattern or anatomical location on the plant. 

Nutrient deficiency symptoms are observed exclusively when the supply of vital nutrients has 
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decreased to a point that hinders the physiological operations of the plants. In such scenarios, it 

would have been beneficial to have executed fertilization strategies well in advance of the onset 

of these symptoms. (Sudhakar & Swarna Priya, 2023) Table 1 describes nutrition deficiency 

symptoms and role of these nutrition in plant body. 

Table 1: Macronutrients and Micronutrients Deficiency Symptoms and Role in Plants 

Body 

Nutrients Deficiency Symptoms Role in plants body 

Type 

of 

leaves 

Color Region Texture 

Calcium 

(Ca) 

New Yellow / brown Spots Death of leaf tips Plays role in membranes 

structure and permeability 

Nitrogen (N) Old Pale yellow Whole  reduced height and 

smaller leaf area 

Elements of proteins, 

coenzymes, chlorophyll, and 

nucleic acids. 

Potassium 

(K) 

Old Brown Edge/ 

segments 

Curling of leaf tips The essential function within 

modulating mechanisms 

involves the translocation of 

carbohydrates, the 

biosynthesis of proteins, and 

comparable processes. 

Magnesium 

(Mg) 

Old Yellow Between leaf 

veins 

Leaf tips look 

burnt 

Activator of enzyme and 

component of chlorophyll 

Sulphur (S) New Yellow Whole stunted growth Significant component of 

plant proteins. 

Phosphorous 

(P) 

Old Reddish purple Leaf tips & 

margins 

Leaf tips look 

burnt 

The key function in the 

regulation of processes such 

as carbohydrate 

translocation, protein 

biosynthesis, and other 

comparable mechanisms. 

Zinc (Zn) New Yellow/Purplish  Between the 

leaf veins 

Death of the 

younger leaves 

Zinc plays a crucial role in 

regulating various metabolic 

processes within enzymatic 

systems 
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Iron (Fe) New Yellow Between the 

leaf veins 

leaves may become 

smaller, deformed, 

or curled 

Production of chlorophyll 

and enzymes involved in 

electron transport 

Boron (B) New Yellow Between the 

veins 

leaves striped or 

mottled 

vital in translocation of sugar 

and carbohydrate metabolism 

Early detection of symptoms may allow for correction during the growing season. To address 

nutrient deficiencies promptly, foliar applications or side dressings can be employed in certain 

conditions for specific nutrients. However, crop yields typically remain lower than if adequate 

nutrients had been available from the start. Plant growth can be negatively impacted by 

deficiencies in any nutrient, especially macronutrients. Insufficient nutrients may lead to various 

issues such as stunted or slow growth, or chlorosis, which causes leaf yellowing. In severe cases 

of nutrient deficiency, leaves may exhibit signs of cellular death. (Sudhakar & Swarna Priya, 2023) 

Agriculture faces challenges like groundwater scarcity, limited arable land, soil infertility, and 

inefficient production. Improper use of fertilizers and manures impacts crops, soil, and overall 

food quality. Techniques such as plant morphology and chemical analysis are used to diagnose 

deficiencies. Computer Vision algorithms show a critical role in monitoring crop health by 

analyzing images to identify deficiencies, enhancing productivity, and ensuring sustainable 

agricultural practices. These technologies are also applied in diverse fields like medicine, 

manufacturing, and phenotyping. (Sudhakar & Swarna Priya, 2023) 

Part of Nutrients in Crop Development 

Crop growth relies on the availability of essential minerals and nutrients, which are critical for 

completing their life cycles and achieving maximum sustainable yields. Deficiencies in these 

nutrients lead to symptoms such as stunted growth, reduced yield, and poor crop quality. Early 

identification and intervention are crucial for mitigating nutrient deficiencies and enhancing 

productivity. Macronutrients (NPK) are required in large quantities, while micronutrients 

(CaMgS) are essential in precise amounts depending on the plant species. Calcium provides 

structural support to plant cells, magnesium facilitates photosynthesis by activating growth 

enzymes, and sulfur aids in chlorophyll formation and protein synthesis. However, nutrient 

absorption is unfair by features such as soil moisture, temperature, pH, toxic elements, and salt 

levels, making it challenging to achieve optimal nutrition under experimental conditions. Effective 

diagnostic methods are necessary to identify abnormalities and implement corrective measures, 

ensuring improved crop health and productivity (Sudhakar & Swarna Priya, 2023). Figure 1 

depicts various symptoms of nutrition deficiency in plant body. 
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Figure 1: (a) Normal foliage, (b) Nitrogen-deficient leaves, (c) Phosphorus-deficient foliage, 

(d) Potassium-deficient leaves, (e) Magnesium-deficient foliage, (f) Boron-deficient leaves, 

(g) Manganese-deficient foliage, (h) Calcium-deficient leaves, (i) Iron-deficient foliage, (j) 

Leaves exhibiting multiple nutrient deficiencies (Tuesta-Monteza et al. – 2023) 

Aspects of Crop Stress That Lead to Nutrient Deficiency 

Nutrient deficiency is expressed through various distinct manifestations associated with crop 

health, which may encompass both observable and internal characteristics. For example, a 

deficiency in calcium results in aberrant leaf morphology. An insufficiency of nitrogen induces a 

chromatic transition in the foliage, manifesting as a pale green hue on the upper portion and a 

yellow tint at the lower extremity of the plant. Manganese deficiency is characterized by the 

emergence of perforations, whereas copper deficiency is evident through a light pink pigmentation 

situated between the leaf veins. Within the framework of precision agriculture, an array of robotic 

apparatuses has been developed to optimize crop productivity, including the renowned FarmBot 

and Agribots, which assess a multitude of crop-dependent variables such as soil salinity, depth for 

efficient seeding and soil organic carbon (SOC), among others. The principal factors contributing 

to crop stress encompass (1) Soil Quality and Nutrient Supply Discrepancies (Electric 

Conductivity and Nutrient Mobility), (2) Fertilizers, (3) climatic conditions, (4) pest infestations, 

(5) irrigation methodologies, and pH levels.  

Unbalanced Soil Quality and Nutrient Availability 
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Soil analysis is essential for measuring nutrient content and understanding factors influencing plant 

growth. Advanced tools like GIS, GPS, and VRT monitor soil conditions and recommend 

fertilizers. Research advancements include a Gaussian process classifier with SVM for detecting 

soil-moisture stress using remote imagery, an IoT-based NPK sensor system leveraging the 

colorimetric principle and fuzzy logic for nutrient monitoring, and the use of UAV and satellite 

imagery with machine learning models to predict nitrogen weight in wheat fields. These 

innovations enhance soil nutrient management and agricultural productivity. 

Fertilizers  

Fertilization strategies in crops are location-specific and depend on factors like soil nutrient 

concentration, crop size, and fertility rate. Over use of fertilizers can harm soil, crops, and also 

human health. An indicator of nitrogen status is the amount of nitrogen in leaves, aiding in precise 

fertilization measures in smart agriculture. However, factors like leaf area index and biomass are 

not always proportional to nitrogen content. Techniques like NDVI (Normalized Difference 

Vegetation Index) and the green color value (GCV) index are used to assess vegetative health and 

nitrogen levels. Studies, such as using NDVI for rice and GCV for spinach, demonstrate 

advancements in nutrient prediction and stress detection for optimizing fertilization. 

Weather Conditions  

Smart sensors in agriculture collect environmental data like humidity, temperature, moisture, and 

precipitation, which are analyzed using specific tools to enhance crop productivity and 

management. Research highlights include mapping climatic patterns for better crop selection, IoT-

based frost prediction systems using machine learning, and decision-support systems for crop 

management that lower costs and increase yields. GPS coordinates from IoT devices aid in spatial 

analysis, field traversal, and weather monitoring. Additionally, smartphones with advanced 

communication protocols provide cost-effective and adaptable solutions for running high-end 

agricultural applications. 

Pest Control in Crops  

Pests and diseases significantly impact crop production, with pests often avoiding detection during 

the day. Advanced technologies have been developed to address this challenge, including sensor-

based monitoring systems, drone-based pest identification systems using NVIDIA Tegra SoC, and 

deep learning (DL) models like YOLOv3 and YOLOv4. These innovations enable early pest 

detection and crop health monitoring, improving yields and quality. Key applications include 

identifying apple diseases, monitoring coconut farms, and controlling pests like Tessaratoma 

papillosa. Challenges like leaf occlusions, drone stabilization, and varying illumination conditions 



International Journal of Agriculture and Environmental Research  

ISSN: 2455-6939 

Volume: 11, Issue: 01 "January-February 2025" 

 

www.ijaer.in Copyright © 2025 by the authors. Licensed under CC BY-NC-SA 4.0  Page 39 

 

highlight areas for future study. Image pattern recognition offers a non-intrusive approach for 

enhancing pest management and crop yield. 

Irrigation and pH  

Smart irrigation systems leverage advanced technologies to address water scarcity and optimize 

crop health. These systems estimate water requirements based on crop type, soil, moisture, and 

climate conditions, using tools like wireless sensor networks, IoT-based frameworks, and machine 

learning (ML) algorithms. pH levels in soil are crucial for nutrient cycling and crop-environment 

interactions, with specific crops having varying pH tolerances. Innovations include dynamic 

models for alfalfa growth that regulate water and fertilizer, LSTM-based systems for 

environmental monitoring, and the AREThOU5A smart irrigation system with IoT sensors and 5G 

capabilities. These solutions enhance irrigation precision, balance soil pH, and improve yields. 

2. RELATED WORK 

1. Image Processing Methods  

A variety of methodologies for detecting nutrient deficiencies in plants through leaf analysis have 

been offered within the domain of image processing. The various research projects and algorithms 

developed for determining healthy or unhealthy regions and classifying them according to the 

particular kind of nutrient disease or deficient indicators are analyzed in this study. The diagnostic 

system will consist of the subsequent components employing image processing methods: 1. 

Measurement of leaf area 2. The leaf's veins and edge segmentation 3. Identifying the Leaf's Shape 

4. The classification of the mineral that is lacking 5. Evaluating the leaf's age 6. Obtaining the 

leaf's colour characteristics. (Jeyalakshmi & Radha, 2017)  

 

Figure 2: Work flow of Nutrition Deficiency Detection and  

Classification using Image processing 
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Figure 2 illustrates the components necessary for detecting and classifying nutritional deficiencies 

via image processing. There are plenty of innovative methods for nutrient analysis and deficiency 

detection in crops using advanced technologies like hyperspectral imaging, image processing, and 

mobile applications. Cotton Nitrogen Estimation (Abulaiti, Y et al. 2020): Hyper-spectral data 

combined with fractional order derivatives (FOD) and optimized spectral indices achieved high 

predictive accuracy (R² = 0.784) for Total Nitrogen Content (TNC) estimation. FOD enhanced 

spectral resolution, with higher orders smoothing spectral curves. Sugarcane Nitrogen Analysis 

(Piti A Teerasit Ket.al. 2012): Portable camera-based analysis of leaf colors in RGB and IR 

spectrums revealed significant correlations between nitrogen levels and indices like G/B, G/R, and 

((IR-R)/(IR+R)), highlighting the IR index's importance for model accuracy. Tomato Deficiency 

Diagnostics (Xu, G., Zhang, F., Shah 2011): A computer vision-based system identified nitrogen 

and potassium deficiencies in soilless tomato culture with over 82.5% accuracy, diagnosing issues 

6-10 days earlier than traditional methods. Rice Nitrogen Management App (Tao, M., Ma, X., 

Huang 2020): A smartphone app utilizing a leaf color chart and CIELAB histograms achieved 

96% accuracy in real-time nitrogen management, outperforming manual inspections. Maize 

Nitrogen Detection (Baresel, J. P., Rischbeck, P. et al. 2017): The 'Nitrate app' automates nitrogen 

estimation in maize leaves using RGB/HSV image analysis, ensuring efficient and accurate 

assessments critical for improving yields. Tomato Nutrient Deficiency Detection (Ghorai, A. K., 

Mukhopadhyay, et al. 2021): Image processing techniques, such as expectation-maximization 

segmentation, enabled precise detection of nutrient deficiencies in tomato leaves, aiding in early 

disease prevention and productivity enhancement. Advancements in Plant Diagnostics (Sivagami, 

S., & Mohanapriya, S. 2019): Studies underscore image processing advancements in diagnosing 

nutrient deficiencies and diseases, enabling rapid and precise field-level assessments for improved 

agricultural practices. Collectively, these studies demonstrate the potential of integrating modern 

imaging and computational tools into agriculture to enhance precision, efficiency, and 

sustainability. 
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Table 2: Summary of Image processing models performance in crop nutrition analysis  

Name of 

Publisher 

& Year 

Nutriti

on 

Type 

Image 

Type 

Total 

Images 

Image Processing 

method 

Outcome 

Metrics 

Image Processing 

Algorithm 

Performance 

Elsevier 

2020[1] 

Nitrog

en  

hyper-

spectral 

images 

range of 

wavelengt

hs (from 

325 nm to 

1075 nm), 

data was 

collected 

from 60 

sampling 

plots 

(multiple 

data sets)  

Spectral Data 

Processing and 

Fractional Order 

Derivative 

R², RMSE and 

residual 

deviation of the 

prediction  

 

0.5-NDSI - R² of 

0.642, RMSE of 

1.361, and RPD of 

1.392                      

0-RSI model -R² of 

0.784, RMSE of 

1.333, and RPD of 

1.800     

ICAEBS 

2012 [2] 

Nitrog

en  

RGB and 

IR images 

 72 

sugarcane 

leaves  

Adaptive 

Thresholding+Edg

e 

Detection+Active 

Contour Model 

R² value  R² value                                                      

2-month-old 

sugarcane - 

91.39%. 

4-month-old 

sugarcane- 72.11% 

Elsevier 

2011[3] 

 

Nitrog

en and 

Potassi

um 

Color 

Images 

80 images 

per class 

(normal, 

nitrogen 

potassium

) 

Fourier Transform 

Method +Color 

Feature 

Extraction+Fuzzy 

K Means classifier 

Accuracy  85% -nitrogen-

deficiency and 

82.5% potassium-

deficient  

Elsevier 

2017[5] 

Nitrog

en  

24-bit 

RGB 

image 

75 Images Segmentation+Col

or 

Analysis+Threshol

ding+Batch 

Processing 

Biomass, Color 

Indices 

  

IIR 2016 All 

Macro

nutrien

ts  

RGB 

Image 

Work 

carried out 

on real 

data set 

Image 

Segmentation+Fea

ture 

Extraction+Textur

e Analysis+K-

means Clustering 

Accuracy Indirectly specified 

through Hue 

Components   
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Name of 

Publisher 

& Year 

Nutriti

on 

Type 

Image 

Type 

Total 

Images 

Image Processing 

method 

Outcome 

Metrics 

Image Processing 

Algorithm 

Performance 

Elsevier 

2020 

 

Nitrog

en and 

Potassi

um 

Color 

images 

captured 

by smart 

phone 

multiple 

images 

were 

taken for 

each color 

panel 

under 

various 

conditions 

Color Threshold 

Segmentation+Co

nversion from 

RGB to 

HSV+Color 

Feature 

Extraction+CIEDE

2000 Formula 

Accuracy Rate, 

leaf color chart 

(LCC), 

Processing 

Time, User-

Friendliness, 

Environmental 

Condition 

Adaptability 

92%, 95%, and 

95% for color 

levels 2, 3, and 4,  

PT- 248 ms, 

IOP 2012 All 

Macro

nutrien

ts and 

sulfur 

RGB 

Image 

4049 

images 

resizing+ 

enhancing+ 

segmentation 

techniques such as 

thresholding and 

color co-

occurrence 

Accuracy, 

Receiver 

Operating 

Characteristic 

(ROC) Curve 

Accuracy was 93% 

Research

Gate 2021 

Nitrog

en, 

Iron, 

Magne

sium 

Zinc, 

Phosp

horus, 

Potassi

um 

(NPK) 

Hyperspec

tral 

Imaging, 

Digital 

Infrared 

Thermogr

aphy, 

RGB, 

Multispect

ral and 

Thermal  

 Multiple 

images 

were used 

depending 

on type of 

deficiency 

detection 

Image Pre-

processing+Featur

e 

Extraction+Classif

ication+Segmentat

ion 

Accuracy  Accuracy was 

83.08% to 90.77%  

Conferenc

e 

Proceedin

g 2014  

Nitrog

en  

RGB 

image 

Not 

exactly 

specified  

GLCM for texture 

analysis, and color 

feature extraction 

using RGB and 

HSV models 

Accuracy Accuracy was high 
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Blue Eyes 

Intelligenc

e Engg & 

Sci. Pub. 

2019 

Miner

al 

Nutrie

nts 

RGB and 

Black & 

White 

Image 

Not 

exactly 

specified  

Geometric 

Transformations+

GLCM+ANFIS 

classification 

Accuracy Accuracy was high 

 

2. Deep learning methods 

A computer model has the ability to perform classification tasks from images directly using a 

process called deep learning. Deep learning has occurred as a powerful tool for detecting plant 

nutrition deficiencies, offering significant improvements over traditional methods. By leveraging 

image-based analysis, deep learning models can identify nutrient deficiencies with high accuracy, 

providing timely and actionable insights for agricultural management. This approach utilizes 

countless deep learning architectures, including Convolutional Neural Networks (CNNs), Graph 

Convolutional Networks (GCNs), and Transformer-based models, to analyze visual symptoms in 

plant leaves.  

The following sections explore the methodologies, datasets, and results from recent studies on this 

topic. To make the best decisions, it helps to gain a comprehensive understanding of all the main 

algorithms. Overall working of most of deep learning algorithm is as follows. 

 

Figure 3: Deep Learning Approach in Predicting Nutrition Deficiency of Crop Leaves 
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CNN-Based Approaches 

Model Architectures: Several studies have employed architectures of CNN such as InceptionV3, 

InceptionResNetV2, and AlexNet to predict nutrient deficiencies in plants. These models have 

been fine-tuned using pre-trained weights and have demonstrated high accuracy in classifying 

deficiencies like copper, iron, magnesium, and others. For instance, the InceptionV3 model 

achieved an accuracy of 97.8% in predicting various nutrient deficiencies from leaf images 

(Shanthini et al., 2024). The use of large-scale datasets, such as the International Plant Nutrition 

Institute (IPNI) dataset, has been crucial in training these models. Image augmentation techniques 

have been applied to enhance the dataset, improving model accuracy and robustness (Sathyan & 

Palanisamy, 2024). RGB images have been effectively used to detect nutrient deficiencies in crops 

like barley, with CNN models achieving varying accuracies depending on the experimental setup. 

Soil-based experiments have shown higher prediction accuracies compared to hydroponic systems, 

highlighting the importance of the experimental environment in model performance (Deichmann 

et al., 2024). Figure 4 shows the common steps of CNN architecture. 

 

Figure 4: The General structure of a CNN 

Advanced Deep Learning Techniques 

The PND-Net model integrates GCNs with CNNs to improve the grouping of plant nutrition 

deficiencies and diseases. This approach focuses on regional feature learning, which enhances the 

model's ability to capture vital regions of diseased leaves, leading to improved classification 

accuracy (Bera et al., 2024). Transformer-based CNNs have been applied to detect nutrient 

deficiencies in coconut trees, achieving high accuracy across different environmental conditions. 

This method demonstrates the potential of transformer architectures in handling complex image 

data for nutrient deficiency detection (Ramesh et al., 2024). 

Application in Specific Crops 
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Deep learning models have been specifically tailored for crops like rice and banana. In rice plants, 

models such as Xception and ResNet have been used to classify nitrogen, phosphorus, and 

potassium deficiencies with accuracies exceeding 92% (Kolhar et al., 2024) (Supreetha et al., 

2024). For banana plants, a CNN with Skip Connections (CNNSC) has been developed to detect 

boron and iron deficiencies, reaching an accuracy of around 95% (Sunitha et al., 2024). 

Dynamic and Time-Series Models 

For aquaponically grown plants, a combination of Long Short-Term Memory (LSTM) networks 

and deep auto encoders has been used to classify nutrient status over time. This approach captures 

the dynamic nature of plant growth and nutrient uptake, providing a comprehensive assessment of 

nutrient status throughout the plant life cycle (Taha et al., 2024). While deep learning offers 

promising solutions for detecting plant nutrition deficiencies, trials remain in terms of model 

generalization across different plant species and environmental conditions. The integration of 

advanced architectures like GCNs and transformers shows potential for improving model 

robustness and accuracy. However, advance research is needed to improve these models and 

expand their applicability to a wider range of crops and nutrient deficiencies. 

Discussion 

Yi et al. (2020) introduced the Deep Nutrient Deficiency for Sugar Beet (DND-SB) dataset 

comprising 5,648 RGB images to detect deficiencies in nitrogen, phosphorus, and potassium in 

sugar beets. Five CNN architectures, including AlexNet, VGG, ResNet, DenseNet, and 

SqueezeNet, were evaluated, with pre-trained models outperforming those trained from scratch. 

Challenges in recognizing nutrient deficiencies across growth stages were noted. Garcia & 

Barbedo (2019) emphasize the progress in imaging for detecting subtle plant changes but stress 

the need for comprehensive datasets and improved data collection for practical adoption in 

agriculture. Watchareeruetai et al. (2018) demonstrate CNNs' effectiveness in identifying black 

gram deficiencies but note challenges in distinguishing multiple deficiencies due to within-class 

variations and suggest exploring time factors and nutrient mobility for improvement. Azimi et al. 

(2020) proposed a 23-layered CNN to classify nitrogen-induced stress in Sorghum shoots, 

outperforming traditional ML methods and established architectures like ResNet18, with an 8.25% 

accuracy improvement. Wulandhari et al. (2019) used the Inception-ResNet-v2 architecture on 

okra plants, achieving 96% training accuracy and 86% testing accuracy through transfer 

learning and fine-tuning. They emphasized real-time detection via smartphone integration. 

Kusanur & Chakravarth (2021) focused on tomato plants, employing Inception-V3, ResNet50, 

and VGG16 models. The VGG16-SVM combination achieved 99.14% accuracy, while 

Inception-V3 attained the best validation accuracy (99.99%). Kumar et al. (2020) employed 

CNNs combined with SVM classifiers to predict nitrogen deficiency in rice crops, using six 
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architectures, including ResNet-50, and achieved a remarkable 99.84% accuracy with ResNet-

50+SVM on a dataset of 5790 nitrogen-deficient rice leaf images. Meanwhile, Sathyavani et al. 

(2021) proposed an IoT-based system integrating CNNs for real-time nutrient deficiency detection 

in various plants, utilizing a 3000-image dataset and achieving improved classification accuracy 

through entropy-based feature weighting. Collectively, these studies highlight the transformative 

potential of advanced deep learning and IoT technologies in agricultural monitoring and crop 

management. Tran et al. (2019) utilized Inception-ResNet v2 and Autoencoder models to predict 

macronutrient and micronutrient deficiencies in tomato plants, achieving 91% accuracy through 

ensemble learning, emphasizing early detection for improved yields in greenhouse environments. 

Sethy et al. (2020) presented a CNN-based approach for nitrogen deficiency detection in rice, 

where ResNet-50 combined with SVM achieved a remarkable 99.84% accuracy, showcasing its 

superiority over other architectures. 

In another study, Kusanur and Chakravarthi (2021) applied transfer learning on models like 

Inception-V3, ResNet50, and VGG16 for classifying nutrient deficiencies in tomato plants, 

achieving 99.14% accuracy with VGG16+SVM and 99.99% validation accuracy with 

Inception-V3. These studies underline the potential of deep learning and transfer learning in 

automating nutrient deficiency detection, offering significant advancements in agricultural 

monitoring and plant health management. Similarly, Lavanya et al. (2022) utilized CNNs and 

image segmentation to classify plant nutrient deficiencies by analyzing segmented leaf blocks and 

aggregating results through a winner-take-all approach and multi-layer perceptron, effectively 

diagnosing deficiencies using a diverse dataset of healthy and unhealthy plant images. Tenaye & 

Bedaso (2022) achieved 98.82% accuracy in detecting nutrient deficiencies in Coffee Arabica 

leaves using the Mobile Net model, outperforming VGG16 and Inception V3, with pronounced 

symptoms for boron and iron deficiencies aiding identification. Taha & Abdalla (2022) employed 

DCNNs to diagnose lettuce nutrient deficiencies in aquaponics, with Inceptionv3 reaching 96.5% 

classification accuracy, surpassing traditional methods and demonstrating potential for real-time 

monitoring.  

Jayasiri et al. (2023) underscored the need for automated solutions to overcome the inefficiencies 

of manual inspections, advocating advanced technologies for crop disease detection and nutrient 

management. Hugar & Waheed (2023) employed a CNN framework with transfer learning to 

detect nitrogen, phosphorus, and potassium deficiencies in rice plants. Using a pre-trained model 

for feature extraction and achieving 96.67% accuracy, their study highlighted the potential of 

precision agriculture to optimize crop yields and promote sustainability. Tuesta-Monteza et al. 

(2023) developed the CoLeaf dataset, consisting of 1,006 images of coffee leaves exhibiting 

various nutritional deficiencies, including Boron, Iron, and Magnesium. Both deep learning and 

classical machine learning methods were applied, with a neural network achieving 87.75% 
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accuracy. Their research emphasized the importance of high-quality datasets and made the CoLeaf 

dataset publicly available to encourage further advancements in agricultural AI applications. 

Swarna R M Priya (2024) developed an ensemble-based model, InceptionV3Dense169, 

achieving 98.62% validation accuracy in diagnosing micronutrient deficiencies in banana crops, 

with potential for further generalization to unseen data. Similarly, Prakash & Srivenkatesh 

(2024) combined SRGANs for image enhancement with CNNs for classification, demonstrating 

superior accuracy and image quality in detecting paddy crop deficiencies, validated using metrics 

like PSNR and SSIM. Kolhar et al. (2024) showcase the superior performance of the Xception 

model over other deep learning models in nutrient classification for rice, achieving 95.14% 

accuracy with minimal trainable parameters, emphasizing its potential for optimizing fertilizer 

use. Prakash & Srivenkatesh (2024) provide a comprehensive review of remote sensing, IoT-

based sensing, and computer vision technologies, advocating their integration with ML and DL to 

enhance crop health monitoring and sustainable agricultural practices. 

YOLO in Agriculture 

Bounding boxes are commonly used in computer vision tasks for object localization and detection. 

These boxes help in identifying specific regions of interest within images, aiding in nutrient 

deficiency detection and classification. Utilizing bounding boxes could enhance the model's ability 

to pinpoint areas in images corresponding to different nutrient deficiencies, thereby improving 

accuracy and performance.  

YOLO Evolution  

Al M., Alif R., & Hussain M. (2024) YOLOv1 introduced two sub-variants, achieving 63.4% mAP 

at 45 FPS, but faced challenges in recall and localization. YOLOv2 incorporated anchor boxes, 

skip connections, and combined datasets to improve small-object detection. YOLOv3 featured 53 

convolutional layers and shifted evaluation to the MS COCO dataset for better performance. 

YOLOv4 optimized IoU calculations and improved small bounding box detection. YOLOv5 

utilized multiple loss functions and achieved 50.7% mAP at 200 FPS on COCO. YOLOv6 

introduced variants like YOLOv6nano for efficiency and performance. YOLOv7 employed novel 

training techniques for higher efficiency. YOLOv8 adopted anchor-free methods, enhancing 

accuracy through object center predictions. YOLOv10 eliminated NMS in training, reduced 

latency, and showcased applications like YOLO-WEED for weed identification with high 

precision. 

Redmon and Farhadi present YOLOv3, a more rapid and precise version of the YOLO object 

detection framework. YOLOv3 reaches a mean Average Precision (mAP) of 28.2 at a resolution 

of 320 × 320, with a processing time of 22 ms, surpassing models such as RetinaNet in terms of 

speed. It enhances the detection of small objects through multi-scale predictions but encounters 



International Journal of Agriculture and Environmental Research  

ISSN: 2455-6939 

Volume: 11, Issue: 01 "January-February 2025" 

 

www.ijaer.in Copyright © 2025 by the authors. Licensed under CC BY-NC-SA 4.0  Page 48 

 

challenges in identifying medium and large objects. The model employs dimension clusters as 

anchor boxes and utilizes logistic regression for scoring objectness, thereby improving detection 

reliability. While it performs well against older detection metrics, it demonstrates comparatively 

weaker results on the COCO AP metric (.5 to .95 IoU). Julie Ann, B. and Susa, W. C. (2022) 

highlights the critical importance of early disease detection in cotton plants to prevent significant 

yield losses Utilizing the YOLOv3 model for classifying and detecting cotton plants, achieved a 

mean Average Precision (mAP) of 96.09% and detection accuracies between 74% and 99% in 

real-world situations. Li et al. (2022) present YOLO-JD, a dedicated deep learning model designed 

for the detection of diseases and pests in jute plants, catering to the increasing need for premium-

quality fiber. Goshika et al. (2023) present a YOLOv5-based deep learning model for assessing 

soybean leaf damage, utilizing data augmentation and a dataset of 2,930 images. Aldakheel et al. 

(2024) integrate an image retrieval method with YOLOv4 to enhance the detection of plant leaf 

diseases, achieving 99.99% accuracy on the Plant Village dataset. 

Table 3: Summary of Deep learning models performance in crop nutrition analysis  

Author & Year Methodology Crop Data set used Detected Deficiencies Result 

Shanthini, M., 

Ashwini et al. 

(2024) 

InceptionV3, 

InceptionResNetV2 

and AlexNet 

Real Images copper, iron, 

magnesium, 

molybdenum, 

nitrogen, phosphorus, 

and potassium 

Accuracy of InceptionV3 

was 97.8%, ResNetV2 

was 97.7% and AlexNet 

was 92.22%.  

Anish, Sathyan., 

Praveen, 

Palanisamy. 

(2024).  

ANN                                                       

CNN 

Real Images All type of Nutrition Enhances effectiveness 

and efficiency than exiting 

models. 

Marion, 

Deichmann., 

Jinhui, Yi., (2024) 

CNN RGB images were 

collected from 

hydroponic, pot, 

mini-plot, and long-

term fertilizer field 

experiments. 

NPK  Accuracy of 94.5% - 

long-term fertilizer field 

experiment (Diko) and the 

lowest of 38.52%- the 

hydroponic system 

(HyPo). 

Asish, Bera., 

Debotosh, 

Bhattacharjee., 

Ondřej, Krejcar. 

(2024 

PND-Net Built from 

CNN 

Evalution on Public 

data set- Banana and 

Coffee plants 

Testing on Potato 

diseases and the 

PlantDoc dataset. 

All type of Nutrition  Accuracy of 90.00% 

Banana plant and 90.54% 

for Coffee plant, and 

96.18% - Potato diseases 

and 84.30%-PlantDoc 
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datasets using Xception 

model 

Shrikrishna, 

Kolhar., Jayant, 

Jagtap., Rajveer, 

Shastri. (2024) 

Xception model, vision 

transformer, and MLP 

mixer  

rice plants NPK Accuracy of Xception 

model was 95.14%,  

S, Supreetha., R, 

Premalathamma., 

S, H, Manjula. 

(2024) 

pre-trained 

Convolutional Neural 

Network (CNN) 

models- InceptionV3, 

VGG16, VGG19, 

ResNet50, and 

ResNet152, Support 

Vector Machine 

(SVM)  

rice plants NPK Accuracy of 97.40% on 

the dataset without 

augmentation and 99.05% 

on the dataset with 

augmentation  

Chirag, Bavishi., 

Nagamma, Patil. 

(2024) 

EfficientNetV2B0 OLID I (Open Leaf 

Image Dataset) 

All type of Nutrition Accuracy of 85.38% and 

an f1-score of 85.08. 

Author & Year Methodology Crop Data set used Detected Deficiencies Result 

M., Ramesh., K., 

Kodeeswari (2024) 

Transformer 

Convolutional Neural 

Network (TCNN)  

Coconut Trees (8990 

images) 

 iron, nitrogen, and 

potassium 

Training accuracy- 

99.97% and a validation 

accuracy - 98.61% 

Swarna R M Priya. 

(2024) 

VGG-19, 

InceptionResNetV2, 

InceptionV3, 

Xception, 

DenseNet169 and 

DenseNet201  

3450 Banana leaf 

images 

Boron, Iron, 

Manganese 

Accuracy was 98.62% and 

an F1 score of 93%  

Mohamed, Farag, 

Taha et al. (2024) 

long short-term 

memory (LSTM) and 

deep autoencoder 

(DAE)  

 Aquaponics Plant- 

Lettuse 

All types of nurtition Accuracy was 94%  

(Prakash & 

Srivenkatesh, 

2024) 

Hybrid approach that 

combines Super-

Resolution Generative 

Paddy Crops Images NPK Accuracy was 93% 
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Adversarial Networks 

(SRGANs) and 

Convolutional Neural 

Networks (CNNs)  

Kolhar, S., Jagtap, 

J., & Shastri, R. 

(2024) 

 Xception model, 

vision transformer, and 

multi-layer perceptron-

based (MLP) mixer 

model 

1156 images of rice 

plants 

 NPK Accuracy was 95.14%  

Yi et al., (2020) AlexNet, VGG, 

ResNet, DenseNet, and 

SqueezeNet 

Sugar Beet (DND-

SB) dataset-5648 

RGB images  

NPK Overall Accuracy was 

87% and 98.4 % for 

DenseNet-161  

P., Sunitha., Uma, 

Bhandari.,et al.  

(2024).  

Convolution Neural 

Network with Skip 

Connections (CNNSC)  

Banana Plants Boron and Iron Accuracy was 95%  

Hugar & Waheed 

(2023) 

Transfer Learning 

methods, Inception-

V3, ResNet50, and 

VGG16 

Rice plants, total 

1064 images, 448 

images of healthy 

rice plants and 616 

images had nutrient 

deficiencies 

NPK Accuracy was 96.67% 

Tenaye, F., & 

Bedaso, M. (2022) 

Mobile Net, VGG16, 

and Inception V3 

422 images of 

Coffee Arabica plant  

 iron, potassium, 

calcium, and boron 

Accuracy was 98.82%  

Author & Year Methodology Crop Data set used Detected Deficiencies Result 

Tuesta-Monteza et 

al. (2023) 

A naive Bayes 

classifier and a neural 

network-based 

classifier  

1006 images of 

coffee leaves  

All Micro and Macro 

Nutrition Deficiency  

Accuracy was 87.75% 

Taha, M. F., 

Abdalla A (2022) 

Inceptionv3 and 

ResNet18  

 3000 images of 

lettuce 

NPK Accuracy was 99.1% for 

segmentation and 96.5% 

for classification.  
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(Kusanur & 

Chakravarth, 

2021) 

Inception-V3, 

ResNet50, VGG16 

with Random Forest 

(RF) and SVM 

880 images of 

Tomato Plants 

 Ca and Mg Accuracy was 99.14% 

(Sathyavani et al., 

2021) 

Convolutional Neural 

Network (CNN), IoT 

devices  

3000 images of 

different plants 

including coriander, 

tomato, pepper, and 

chili 

All type of Nutrition Impoved Accuracy 

(Sethy et al., 2020) ResNet-18, ResNet-50, 

GoogleNet, AlexNet, 

VGG-16 and VGG-19 

with 

SVM 

5790 rice images Nitrogen Accuracy was 99.84%. 

(Kumar et al., 

2020) 

ResNet-18, ResNet-50, 

GoogleNet, AlexNet, 

VGG-16, and VGG-

19+ SVM classifier 

5790 rice leaf 

images 

Nitrogen  Accuracy of ResNet-50 

with SVM was 99.84% 

Azimi, S., Kaur, 

T., & Gandhi, T. 

K. (2020) 

Classical Machine 

Learning (ML) and 

Deep Learning (DL) 

96,867 images taken 

from the Donald 

Danforth Plant 

Science Center of 

Sorghum plants 

Nitrogen Average accuracy 

improvement was 8.25% 

Tran, T.-T., Choi, 

J. et al. (2019)  

Inception-ResNet v2 

for supervised learning 

and Autoencoder for 

unsupervised learning 

571 images of 

tomato plants 

Calcium, Potassium, 

and Nitrogen 

Accuracy was 91% 

Wulandhari, L. 

A.Agung et al. 

(2019) 

DCNN-Inception-

ResNet-v2, transfer 

learning and fine-

tuning 

231 images of okra 

plants 

 NPK and Ca Accuracy of Training -96 

% and testing -86%  

 

3. PERFORMANCE ANALYSIS METRICS 

In general, a ML/DL model is evaluated for its performance using various parameters and metrics. 

The metrics is an indicator of the model’s efficiency and thereby it helps to select the appropriate 

model for our task. Hence, the comparison of the models is realized using these mathematical 
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operations. In Deep learning methods or machine learning methods, the evaluation of the model is 

done using the confusion matrices and by comparing metrics like accuracy, recall, precision and 

F1 score. 

Table 4: Methods to Evaluate the Performance of a Deep Learning Models 

Metric Evaluation Formula Description  

Confusion 

Matrix 

 

 Predicted 
Positive (1) 

Predicted 
Negative (0) 

Actual 
Positive (1) 

True Positive 
(TP) 

False Negative 
(FN) 

Actual 
Negative (0) 

False Positive 
(FP) 

True Negative 
(TN) 

True positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) prediction 

numbers are displayed in a matrix. 

 

Accuracy  Accuracy = Correct Predictions / Total 

Predictions 

Accuracy= TP + TN / TP + TN + FP + FN 

Calculates the ratio of accurately predicted cases 

to determine the model's overall accuracy. 

Precision Precision = true positives / predicted 

positives 

Precision = TP / TP + FP 

The effectiveness of the model in predicting 

positive instances is indicated by the percentage of 

true positive predictions among all positive 

estimates. 

Sensitivity 

aka Recall 

Recall = (true positives / all actual positives) 

Recall = TP / TP + FN 

The model's ability to detect positive outcomes is 

shown by the percentage of accurate positive 

predictions among all real positives. 

F1 Score F1 Score = 2* Precision*Recall/Precision + 

Recall  

The harmonic means of Precision and Recall 

Specificity Specificity = (true negatives / all actual 

negatives) 

Specificity = TN / TN + FP 

The model's ability to detect negative occurrences 

is demonstrated by the percentage of true negative 

predictions among all real negatives. 

Mean 

Squared 

Error   

Measures the average of the squares of the errors 

between predicted and actual values and used for 

regression tasks. 

Root Mean 

Squared 

Error   

The square root of MSE, providing the error in the 

same units as the output variable. 

Mean 

Absolute 

Error   
 

The Mean Absolute Error gives average of the 

absolute differences between predicted values and 

actual values. 
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R² (R-

squared) 
 

Regression tasks employ the percentage of the 

dependent variable's variance that can be predicted 

from the independent variables. 

 

4. RESEARCH GAPS SHAPING THE SCOPE OF FUTURE RESEARCH  

Current challenges involve satisfying food demand for a growing population while utilizing 

limited agricultural land, identifying specific factors such as restricted manpower, variations in 

environmental conditions, recognizing crop deficiencies across different light conditions and 

geographic locations causing total yield loss. The future scope with regard to the development of 

crop nutritional deficiency detection model is related to the above-mentioned research challenges 

and other specific factors such as the following: 

1. Public standard crop leaf image dataset for nutrition analysis is not available, leading in 

difficulty of objective comparison among different studies. 

2. Size of training dataset is small however for deep learning algorithms large numbers of 

images are required. In terms of the quantity of images used, there is a lot of variety. 

3. Experts must classify the images used during the training process. The relationship between 

nutrition detection by the laboratory analyst and through a deep learning method has been 

studied in few researches. 

4. Finding the nutritional deficiency in an early stage of crop growth is a difficult issue that 

necessitates the study of various feature selection, image segmentation, and thresholding 

techniques. 

5. Selection of deep learning CNN architecture specific to agriculture application is 

challenging task with respect to accuracy of the model. 

6. Nutrition imbalance quantification. Stress due to residues of pesticide application and pest 

damage or other external factors  

7. Most research is based on Static Image Models and traditional image analysis methods 

Proposed model integrates soil nutritional analysis with image-based crop health assessment to 

improve agricultural productivity. Utilizing soil health card data, this model identifies nutritional 

deficiencies in crops such as cotton, chili, and soybean. High-resolution images of crops are 

captured under controlled conditions, focusing on deficiencies of key nutrients like Nitrogen (N), 

Phosphorus (P), Potassium (K), and others. The labeled dataset, generated through soil test reports 

and expert agronomist insights, is validated using deep learning neural networks. The model will 

demonstrate superior performance on training datasets and generalizes effectively to real-world 

testing data, offering practical utility for precision agriculture. The agricultural industry would 

evolve as a highly progressive sector when these kinds of systems and tools or techniques are used 

for various management strategies, such as sowing to yield forecasting. The other advanced 
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management strategies and approaches needed to be concentrated are the implementations of 

greenhouses, hydroponics, aquaponics, and vertical farming. 

5. CONCLUSION  

The study emphasizes the significant advancements made in the application of image processing 

and machine learning methodologies for identifying plant nutrient deficiencies, achieving accuracy 

rates between 82.5% and surpassing 99% in optimized conditions. Hyperspectral imaging is 

particularly noted for its accuracy, whereas RGB and smartphone-based techniques offer practical 

and user-friendly alternatives with moderate levels of precision. Deep learning architectures, 

especially Convolutional Neural Networks (CNNs), have shown exceptional effectiveness, 

reaching accuracy levels exceeding 99% in certain instances, particularly for specific crops and 

nutrients such as nitrogen, phosphorus, and potassium. Approaches like transfer learning and data 

augmentation have been crucial in improving these results. YOLOv3 is positioned as a strong and 

efficient tool for object detection tasks. Image preprocessing techniques can remove noise but may 

introduce artifacts, limiting adaptability to different growth stages or leaf locations. Traditional 

machine learning methods struggle with raw data processing and require extensive feature 

engineering, which can hinder efficiency.  However, the variability in results linked to the quality 

of datasets, crop types, and experimental conditions accentuates the importance of formulating 

standardized datasets and methodologies to ensure uniform and trustworthy performance across 

various applications. 

In order to increase the model's precision and effectiveness, future studies should look into the use 

of bounding boxes to precisely identify areas in plant imagery that are deficient in nutrients. The 

incorporation of soil nutrient assessments as a foundational step prior to the detection of plant 

deficiencies will guarantee a thorough comprehension of nutrient availability. Furthermore, the 

amalgamation of laboratory-based evaluations of foliar and soil nutrition with image-processing 

methodologies will yield a holistic and dependable system for detection. 
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