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ABSTRACT 

Forecasting agricultural prices is exceptionally difficult because of the unpredictable global 

weather events, influential role of government policies, evolving consumer preferences and 

technology. This study focuses on the impact of price forecasting in the agricultural sector, 

specifically within the cotton industry. Accurate predictions of cotton prices are of most important 

to various stakeholders, including cotton farmers, textile mills and shippers. To enhance 

forecasting accuracy, this research employs advanced machine learning techniques such as 

Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN), Gated Recurrent Unit 

(GRU), Long Short-Term Memory (LSTM), as well as stacked LSTM models. These models are 

trained and evaluated using statistical metrics like RMSE, MAPE, SMAPE and MAE. Notably, 

the stacked LSTM model consistently outperforms other models, demonstrating superior 

predictive performance with minimal errors. This study also highlights the stacked LSTM's ability 

to effectively capture long-term data dependencies, leading to significantly improved prediction 

precision. 

Keywords: ANN, RNN, GRU, LSTM, Stacked LSTM and price forecasting 

INTRODUCTION 

Cotton stands as a pivotal cash crop and a vital fiber in the agricultural landscape of India, which 

holding a dominant position in both the country's industrial and agricultural sectors. Often referred 

to as "White-Gold," cotton is an essential raw material for textile production. India holds the 

second position worldwide for cotton consumption, export and production, having production of 
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5.84 million metric tonnes. China stands as the primary producer, generating 5.89 million metric 

tonnes, trailed by the USA with 3.15 million metric tonnes, Brazil with 3.02 million metric tonnes 

and Pakistan with 0.85 million metric tonnes [3]. India contributing approximately 26% to the 

world's cotton production [1]. Indian cotton industry supports around 6 million cotton farmers and 

serves as a livelihood source for 40-50 million workers. Notable cotton-producing nations include 

China, the USA, Pakistan, Brazil, Australia, Uzbekistan, Turkey, Turkmenistan and Mexico [2]. 

Among the top 5 countries of production [3], India is alone contributing 31% to the world’s cotton 

production.  

Also, within India, Gujarat is the leading producer of cotton with the production of 87.12 lakh 

bales of cotton [4], followed by Maharashtra (81.85 lakh bales), Telangana (54.41 lakh bales), 

Rajasthan (25.51 lakh bales) and Karnataka (20.93 lakh bales) during 2022-23. Maharashtra has 

the largest area under cotton cultivation, covering 42.29 lakh hectares, followed by Gujarat with 

25.49 lakh hectares and Telangana with 20.24 lakh hectares. 

Cotton is a crop grown worldwide. Which is prone to substantial price variations influenced by 

global economic fluctuations. The fluctuations in prices present potential risks to individuals and 

entities involved in cotton production and distribution, including producers, suppliers, consumers 

and other stakeholders. Therefore, the need to predict cotton prices becomes highly significant. 

Numerous researchers have explored statistical models for agricultural price forecasting such as 

applications of ARIMA model for agricultural price forecasting [5]. Investigation of model in 

agricultural price forecasting [6]. Forecasting horticultural products price [7], Oil palm price [8], 

Tomatoes price [9], Maize price [10], Paddy price [11], Onion price [12], Pulse price [13] and 

Natural Rubber price [14]. These studies primarily concentrated on the prediction of prices, serving 

as a valuable resource for market traders, farmers and policymakers. 

Multiple researchers have utilized the ARIMA model in diverse agricultural domains for predictive 

purposes, such as forecasting agricultural productivity [15], wheat area and production [16], 

livestock products consumption [17], maize production [18], potato production [19]. The 

technique of time series forecasting involves analysing historical patterns within a series of data 

points to anticipate future price trends. Apart from traditional time series models, recent studies 

demonstrate an increasing interest in employing deep learning algorithms, notably Artificial 

Neural Networks (ANN) in various agricultural predictions. These include the utilization of ANN 

for wheat yield prediction [20], ANN for predicting area, production and productivity of sapota in 

Gujarat [21], Forecasting area, production and productivity of citrus in Gujarat by using GARCH, 

GARCH and TAR models [22], Forecasting models for predicting pod damage of pigeon pea in 

Varanasi region [23], Forecasting of Early Maturing Pigeon pea Yield for Central Zone of India 

[24], Forecasting of Losses Due to Pod Borer, Pod Fly and Yield of Pigeon pea for Central Zone 



International Journal of Agriculture and Environmental Research 

ISSN: 2455-6939 

Volume: 11, Issue: 01 "January-February 2025" 

 

www.ijaer.in Copyright © 2025 by the authors. Licensed under CC BY-NC-SA 4.0  Page 246 

 

of India by Using Artificial Neural Network [25], Sugarcane yield forecasting using ANN models 

[26], An artificial neural network approach for predicting area, production and productivity of 

Banana in Gujarat [27]. Using deep learning techniques prediction of fruit production [28], Yield 

forecasting of Maize by linear regression and artificial neural networks [29], Corn price forecasting 

[30], Choosing an accurate cacao price forecasting model [31], Price forecasting of coriander [32], 

Recurrent neural network algorithm for forecasting banana prices [33], Moreover, a variety of 

Deep learning based models: Basic LSTM, Bi LSTM, Stacked LSTM, CNN LSTM and Conv 

LSTM were used to forecast Agricultural commodities prices [34], A CNN-Bidirectional LSTM 

Approach for Price Forecasting of Agriculture commodities in Gujarat [35], Forecasting 

agricultural commodities prices using deep learning-based models: basic LSTM, bi-LSTM, 

stacked LSTM, CNN LSTM, and convolutional LSTM [36], Deep long short-term memory-based 

model for agricultural price forecasting [37], significance of deep learning techniques is 

highlighted in [38-39]. To forecast cotton prices, we've exclusively focused on machine learning 

algorithms. 

The area of Artificial Intelligence (AI) known as Deep Learning (DL) enables computers to learn 

and enhance their performance without requiring explicit programming. These models utilize 

historical data exclusively to learn the probabilistic relationship between past observations and 

future outcomes. The main objective of this research is to forecast the cotton price in Gujarat, 

India. To achieve this, various neural network models, including ANN, RNN, GRU, LSTM and 

stacked LSTM, are employed rather than statistical techniques because of many empirical studies 

indicating the superior performance of machine learning algorithms [40] over statistical methods. 

However, an issue in prior research was the utilization of weekly or monthly data, potentially 

failing to accurately depict daily price fluctuations. In response, our investigation centres on daily 

data, spans from April 2002 to April 2023 to ensure a more accurate representation of cotton price 

changes. Our aim is to address the real-world challenge of delivering more precise cotton price 

predictions, which can aid farmers, traders and policymakers in making well-informed choices. 

The research seeks to determine the forecasting model that offers the most accurate predictions, 

which will be evaluated using performance metrics like RMSE, MAPE, SMAPE and MAE. 

MATERIALS AND METHODS 

Data collection 

The time-series data sourced from AGMARKNET 

https://agmarknet.gov.in/SearchCmmMkt.aspx?Tx_Commodity=15&Tx_State=GJ&Tx_District

=11&Tx_Market=64&DateFrom=1-April-2000&DateTo=21-April-2023&Fr_Date=1-April-

2000&To_Date=21-April-

2023&Tx_Trend=0&Tx_CommodityHead=Cotton&Tx_StateHead=Gujarat&Tx_DistrictHead=

(%20https:/agmarknet.gov.in/)
(%20https:/agmarknet.gov.in/)
(%20https:/agmarknet.gov.in/)
(%20https:/agmarknet.gov.in/)
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Rajkot&Tx_MarketHead=Rajkot regarding the daily modal cotton prices spanning from 2002 to 

2023 was gathered from the Rajkot District market in Gujarat, India. Rajkot Market was chosen 

as the representative market because it has the highest level of cotton arrivals. The dataset covers 

the period from April, 2002 to April, 2023 and comprises 7696 observations. 

Methodology  

Following analytical models were used in this study: 

Deep learning techniques 

In artificial intelligence, deep learning focuses on teaching neural networks to recognize complex 

data patterns and make predictions. 

Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) aim to replicate the intelligence of the human brain in 

machines. They are biologically motivated and possess several salient features such as being data-

driven, self-adaptive, inherently non-linear and universal functional approximators. ANNs 

typically consist of three layers: The Input layer, Hidden layers and Output layer, with 

interconnected neurons, as shown in Fig 1. 

When creating ANN models, it is crucial to take into account factors like the quantity of input 

vectors, layers, output vectors and neurons. 

ANN model Equation for the r value based on trained neural network [41]:  

𝜙𝑟𝑛 = 𝑓𝑆𝑖𝑔 {𝑏0 + ∑ [𝑊𝑘𝑓𝑠𝑖𝑔 (𝑏ℎ𝑘 + ∑ 𝜔𝑖𝑘 𝑥𝑖
𝑚
𝑖=1 )

ℎ

𝑘=1
} …. (1) 

Where 𝜙𝑟𝑛 is the normalized (in the range -1 to 1 in this case) r value 

𝑏0 is bias at the output layer 

𝑊𝑘  is connection weight between kth neuron of hidden layer and the single output neuron 

𝑏ℎ𝑘  is bias at the kth neuron of hidden layer  

h is number of neurons in the hidden layer 

𝜔𝑖𝑘  is connection weight between ith input variable and kth neuron of hidden layer 

𝑥𝑖 is normalized input variable i in the range [1,1] and 𝑓𝑆𝑖𝑔 is sigmoid transfer function. 

(%20https:/agmarknet.gov.in/)
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Typically, the logistic sigmoid function. denoted as  𝑔(𝑥) =
1

1+ⅇ−𝑥  is employed as the non-linear 

activation function. Alternatively, various other activation functions like linear, hyperbolic 

tangent, Gaussian and so on can be employed. [42]. 

 

Recurrent Neural Network (RNN)  

Recurrent Neural Networks (RNNs) are a specialized form of Artificial Neural Networks (ANNs) 

that process sequences over time. They've evolved from traditional feedforward neural networks 

and possess internal memory, allowing them to handle varying sequence lengths [43]. This is 

achieved by establishing connections between nodes at consecutive time steps, introducing a time-

dependent aspect to the model. 

At each time point, t, nodes with recurrent connections receive input from both the current data 

point, 𝑥(𝑡) and the hidden node values ℎ(𝑡−1), which represent the network's previous state. The 

output, �̂�(𝑡) at a time 𝑡, depends on the hidden node values ℎ(𝑡) at that moment. It's worth noting 

that the input, 𝑥(𝑡−1), from the prior time step, 𝑡 – 1, can have an impact on the output, �̂�(𝑡), at 

time 𝑡 and this influence subsequently travels through these recurrent connections [44]. The 

following computations illustrate the forward step. 

ℎ(𝑡) = 𝜎(𝑊ℎ𝑥𝑥(𝑡) + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎ)  …(2) 

𝑦̂(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎℎ(𝑡) + 𝑏𝑦)      … (3) 
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Where 𝜎 represents the sigmoid activation function, typically logistic in nature. This function 

introduces a non-linear transformation, taking a real-valued input and mapping it to an output 

within the range of 0 to 1. The matrices 𝑊ℎ𝑥 and 𝑊ℎℎ are associated with standard weights, 

linking the input and the hidden layer, as well as recurrent weights, linking the hidden layer to 

itself across successive time steps. The vectors 𝑏ℎ and 𝑏𝑦 serve as bias parameters, enabling each 

node to adjust by learning an offset. 

The output vector �̂�(𝑡) predicts the subsequent value in the sequence. Considering the illustration 

in Fig 2, The RNN networks share weights across time steps, resembling both cyclic behaviour 

and a deep network. They can be trained over multiple time steps using "backpropagation through 

time" (BPTT) [46]. 

Long short-term memory (LSTM) 

In 1997, Hoch Reiter and Schmid Huber introduced the concept of LSTM. which was developed 

as a solution to the problems associated with traditional RNNs, specifically addressing concerns 

related to exploding and vanishing gradients [47].  

LSTMs, while similar to RNNs with hidden layers, use memory cells instead of standard nodes. 

These cells are interconnected and maintain a consistent weight, allowing gradients to flow across 

multiple time steps without vanishing or exploding issues. 
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Fig 3 displays the architecture of a vanilla LSTM block, which involves the gates, the input signal 

x(t), the output y(t), the activation functions, and peephole connections. The output of the block is 

recurrently connected back to the block input and all of the gates. 

The equations provided below pertain to three gates and the cell state [49]: 

 Input Gate (𝑖𝑡): The input gate decides the amount of information from the present input 

that should be preserved in the cell state. 

            𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         …. (4) 

        �̃�𝑡 = tan ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  …. (5) 

 Forget Gate (𝑓𝑡): The forget gate controls the amount of previous cell state information 

to be forgotten. 

    𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓)       …. (6) 

 Output Gate (𝑂𝑡): The output gate controls the quantity of information to be emitted 

according to the current cell state. 

          𝑂𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)      …. (7) 

     ℎ𝑡 = 𝑂𝑡 tan ℎ(𝐶𝑡)                    …. (8) 
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Cell State (𝐶𝑡): The cell state functions as the memory component within the LSTM 

network. It facilitates the transfer of information across the sequence and maintains long-term 

relationships. The cell state can undergo updates, be retained or be disregarded, all depending on 

the gating mechanisms in place. 

   𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑥𝑡�̃�𝑡                      …. (9) 

Where  𝐶𝑡−1 corresponds to previous cell state. 

Symbols and functions: 

𝑊𝑖 , 𝑊𝑐 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑓 , 𝑊𝑜  are weight matrices for input, candidate, forget and output gate 

𝑏𝑖 , 𝑏𝑐, 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑓  , 𝑏𝑜 stands bias vectors for input, candidate, forget and output gate 

ℎ𝑡−1 indicates the previous hidden state 

𝑥𝑡 signifies the current input 

𝜎 corresponds to sigmoid function, and  

tanh represents hyperbolic tangent function. 

Gated Recurrent Unit (GRU) 

GRUs (Gated Recurrent Units) were introduced as an alternative to LSTMs to reduce 

computational demands, and this concept was originally introduced by Cho et al. in the year 2014 

[50]. GRUs function as a gating mechanism in recurrent neural networks. They resemble LSTMs 

but are more parameter-efficient by omitting an output gate. This streamlined structure allows 

GRUs to be trained faster than LSTMs. GRU created with the purpose of capturing extended 

dependencies within sequential data [51]. 

The update gate and reset gate in GRU are defined as follows: 

Update gate: 

      𝑧𝑡 = 𝜎(𝑥𝑡𝑈𝑧 + ℎ𝑡−1𝑤𝑧)        …. (10) 

Reset gate: 

           𝑟𝑡 = 𝜎(𝑥𝑡𝑈𝑟 + ℎ𝑡−1𝑤𝑟)          …. (11) 
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Where 𝜎 logistic denotes the sigmoid function, 𝑥𝑡 and ℎ𝑡−1 represents input and previous hidden 

state respectively, 𝑈𝑧, 𝑤𝑧, 𝑈𝑟 and 𝑤𝑟 are corresponds to the weight matrices which are learned. 

The update gate decides the quantity of information to be refreshed and conveyed to the current 

time step (t), whereas the reset gate manages the aspects of the previous hidden state (ℎ𝑡−1) that 

should be discarded or neglected. 

 

Fig 4 indicates 𝑥𝑡 is an input state, ℎ𝑡  represents a new hidden state, O is an output state, ℎ𝑡−1 

signifies previous hidden state, 𝜎 corresponds to the sigmoid function and tanh is the hyperbolic 

tangent function. 

The candidate activation in GRU is computed as: 

Candidate activation: 

     ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑈ℎ + (ℎ𝑡−1𝑟)𝑤ℎ          …. (12) 

Where 𝑈ℎ and 𝑤ℎ represents the weight matrices which are learned, 𝑥𝑡 and ℎ𝑡−1 denotes input 

and previous hidden state respectively, r is reset gate, 𝑡𝑎𝑛ℎ is hyperbolic tangent function. 
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The candidate activation signifies potential new data that may be incorporated into the hidden state 

(ℎ𝑡). This is achieved by merging the previous hidden state, which is adjusted by the reset gate, 

with the current input (𝑥𝑡). 

The hidden state in GRU is updated using the update gate: 

Hidden state update: 

      𝑠𝑡 = (1 − 𝑧)ℎ𝑡 + 𝑧ℎ𝑡−1                      …. (13) 

Where ℎ𝑡−1 represents previous hidden state, ℎ𝑡 denotes Candidate activation state, z is update 

gate. 

The update gate manages the balance between the prior hidden state and the candidate activation, 

thus dictating the impact of each on the present hidden state (𝒉𝒕). 

Stacked LSTM 

Due to rapid progress in computer hardware and the widespread adoption of diverse deep learning 

algorithms, deep architectures have demonstrated their remarkable capacity to independently 

extract features. Consequently, incorporating multiple LSTM layers into a deep neural network 

based on LSTM holds significant significance. The fundamental idea behind deep neural networks 

revolves around employing multiple layers for nonlinear mapping, facilitating the hierarchical 

extraction of features from input to output. This visualized concept is illustrated in Fig 5, where 

the output from the hidden layer not only advances over time but is also used as input for the 

subsequent LSTM hidden layer [52]. 
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Evaluation of Forecasting Techniques: 

Forecasting techniques will be evaluated using standard criterion of evaluation. Following are 

some measures for comparison: 

The Mean Absolute Percentage Error (MAPE) is another commonly used measure. It is the sum 

of the individual absolute errors divided by the demand (each period separately). It is the average 

of the percentage errors. 

MAPE = 
1

𝑛
∑ |

(𝐹𝑡−𝐴𝑡)

𝐴𝑡
|

𝑛

𝑡=1
× 100                 …. (15) 

Where Ft is a forecasted value for time t and 𝐴𝑡  is the actual value for time t, n is the total number 

of forecasts. 

The Root Mean Squared Error (RMSE) is one of the most commonly used measure of forecast 

accuracy. It is defined as the square root of the average squared error. 

RMSE = √
1

𝑛
∑ (𝐹𝑡 − 𝐴𝑡)2𝑛

𝑡=1                            …. (16) 

Where Ft is a forecasted value for time t and 𝐴𝑡  is the actual value for time t. 

The Symmetric Mean Absolute Percentage Error (SMAPE) is a percentage error measure that 

gives equal weight to positive and negative errors 

SMPE = 
1

𝑛
∑

(|𝐴𝑡−𝐹𝑡|)

(
𝐴𝑡+𝐹𝑡

2
)×100

𝑛

𝑡=1

                               …. (17) 

Where Ft is a forecasted value for time t and 𝐴𝑡  is the actual value for time t, n is the total number 

of forecasts. 

RESULT AND DISCUSSION  

Dataset 

In this research, we have utilized secondary data sourced from AGMARKNET 

(https://agmarknet.gov.in/) which pertains to cotton prices in the Rajkot district market of Gujarat, 

India. Rajkot Market was chosen as the representative market because it has the highest level of 

cotton arrivals. The dataset covers the period from April, 2002 to April, 2023 and comprises 7696 

observations. However, it's important to note that the dataset has its limitations, including missing 

(https:/agmarknet.gov.in/)
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observations of 789 out of 7696, which were addressed by filling in the gaps with the average 

values from the preceding five working days. 

Data description 

We conducted a statistical analysis of cotton prices dataset which we have collected. The dataset's 

mean cotton price is Rs. 4326.50 per quintal. The 1st quartile is Rs. 2660 per quintal, the 3rd 

quartile is Rs. 5250 per quintal and the median stands at 4253 per quintal. These statistics indicate 

that the data's distribution is non-normal due to the disparity between the mean and median. The 

cotton prices exhibit a substantial degree of variation, ranging from a minimum of Rs. 1650 per 

quintal to a maximum of Rs. 12370 per quintal. Furthermore, the data is positively skewed with a 

skewness value of 1.21, as shown in the Table 1. 

Table 1: Description of Cotton price data from 2002 to 2023 of Rajkot market 

 

Fig. 6 shows the fluctuations of cotton prices in Rajkot market of Gujarat from 2002 to 2023. Over 

this 21-year span, the prices exhibit substantial fluctuations, reflecting the intricate dynamics of 

the cotton market. These fluctuations are influenced by factors like global economic conditions, 

Parameter Indian Rupees per quintal (₹/q) 

Number of observations 7696 

Average 4326.50 

Standard deviation 1983.78 

Minimum value 1650 

1st quartile 2660 

Median 4253 

3rd quartile 5250 

Maximum value 12370 

Skewness 1.21 

Kurtosis 1.93 
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climatic events and government policies. Notably, the prices hit a peak in certain years, such as 

2011 and experienced troughs in others. 
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The distribution curve, accompanied by a histogram in Fig. 7, paints a revealing picture of the 

cotton price data's statistical characteristics. The positively skewed nature of the distribution is 

clearly evident. This skewness, with a value of 1.21, indicates that the data's tail extends toward 

higher prices, reflecting occasional price spikes. The majority of data points cluster around the 

median value of Rs. 4253/quintal. However, this central tendency is influenced by a handful of 

outliers on the higher end of the price range. 

Model building  

To assess the effective cotton price prediction algorithm for Gujarat in 2023, we utilized daily 

modal price data from the Agmarknet website [57], covering the period from 2002 to 2023. Table 

2 outlines the division of the data into training and testing sets, along with the specific period for 

forecasting cotton prices. We adopted a 90% training and 10% testing data split, this modification 

was made to ensure a more robust training phase, allowing the model to capture intricate patterns 

and relationships within the data, mitigate overfitting concerns and accommodate the learning of 

diverse data patterns and potential noise or outliers. Moreover, when working with large datasets, 

dedicating the majority of the data to training ensures sufficient learning opportunities. To gauge 

the model's performance, we initially constructed it using the training data and then evaluated it 

using the testing data by comparing the model's predictions to the actual observed values. 

Table 2: Details of splitting price data 

Various forecasting models including ANN, RNN, LSTM, GRU and stacked LSTM, as detailed 

in the methodology section, were trained using the designated training dataset. Subsequently, the 

testing dataset was employed to identify the optimal model. Table 3 provides the accuracy metrics 

for the models under evaluation. The model selected exhibited the most favourable performance, 

characterized by the lowest values across accuracy metrics such as RMSE, MAPE, SMAPE and 

MAE when applied to the testing dataset. This chosen model was then utilized for predicting prices 

over the upcoming 365 days, spanning from May 2023 to April 2024. 

Crop Year Total data 

points 

Training data 

points 

Testing data points 

Cotton 2002 to 2023 (21 

years) 

7692 6922 (90 percent) 770 (10 percent) 

Forecasting period  May 2023 to April 2024 
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Table 3: Accuracy comparison of forecasted cotton price by  

different models on test dataset 

 

The Area chart in Fig 8 illustrates the Root Mean Squared Error (RMSE) values associated with 

different forecasting models on testing dataset. Each model is represented by a distinct area size 

directly corresponding to the magnitude of RMSE. Notably, the Stacked LSTM model stands out 

with the smallest area, indicating the lowest RMSE of 0.897 among all models. This smaller area 

denotes superior predictive accuracy, suggesting minimal deviation between the Stacked LSTM's 

forecasted prices and the actual observed prices. In contrast, larger areas representing LSTM, 

GRU, RNN and ANN models indicate higher RMSE values, highlighting increased predictive 

errors in their respective forecasts. as confirmed by the results in Table 3. 
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Bar chart presented in Fig 9 visualize the performance comparison of MAPE, SMAP and MAE 

values across different models on testing dataset, making it simple to understand the results. The 

Stacked LSTM model showed the best performance, indicating smaller errors compared to other 

models. It had lower values for MAPE (0.456), SMAPE (0.579) and MAE (31.038). In contrast, 

methods like LSTM, GRU, RNN and ANN resulted in larger values for these error metrics, 

indicating they were less accurate in predicting future prices. This suggests that the Stacked LSTM 

method performed better in making more accurate estimates for future prices. 
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Tuning Parameters of stacked LSTM model 

In this segment, we elaborate on the parameters and hyperparameters employed in the Stacked 

LSTM model. The architecture and parameter details of the optimal Stacked LSTM model are 

summarized in Table 4. 

Table 4: Tuning parameters of Stacked LSTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed design of the Stacked LSTM model, outlined in Table 4, encompasses a stratified 

arrangement involving the sequential stacking of three LSTM layers. These hidden layers are 

structured with 7, 8, and 12 neurons, respectively, progressively escalating in capacity. The input 

layer is configured to handle 30 input values, representing historical time-series data of cotton 

prices, the output layer comprises a single neuron responsible for generating forecasted price 

Parameters 

number of inputs  30 

time step 30 

features 1 

number of LSTM  3 

Neurons in layers  

                 Hidden 1st layer 

 

7 

                 Hidden 2nd layer 8 

                 Hidden 3rd layer 12 

                 Output layer 1 

Other hyperparameters 

Learning Rate 0.0001 

Epochs 30 

Batch size 32 

Optimiser Adaptive Moment 

Estimation 
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outputs. Additionally, the model is fine-tuned with various essential hyperparameters, including a 

training duration of 30 epochs, a moderate batch size of 32 for iterative optimization, a learning 

rate set at 0.0001 and the utilization of the Adam optimizer to enhance predictive accuracy and 

capture intricate temporal dependencies within the data. 

 

Fig 10 demonstrates the performance of the Stacked LSTM model on both the training dataset 

comprising of 6922 observations and the predicted testing data of 770 observations. Among all the 

models considered in this study, the Stacked LSTM emerges as the foremost forecasting model for 

cotton in 2023, as evident from Table 3. Employing this model, the forecast of cotton prices for 

the next 365 days, spanning from April 22nd, 2023, to April 19th, 2024, is presented in Fig 10. 

The graph depicts the projected cotton prices for the forthcoming 365 days, showing a consistent 

decrease in price until reaching 5000 rupees per quintal and maintaining this level throughout the 

year 2024. 

DISCUSSION 

The evaluation results in Table 3 show that the Stacked LSTM model exhibited the highest level 

of predictive accuracy among all models, establishing it as a dependable option for future 

forecasting tasks. It displayed outstanding performance with the lowest combination of RMSE of 

0.897, MAPE of 0.456, SMAPE of 0.579 and MAE of 31.038 when assessed with the test data 

from the time series dataset. In the overall ranking, the Simple LSTM model closely followed as 

the second-best performer, with the GRU, RNN and ANN models following in sequence.  

This research also highlighted a consistent trend in cotton pricing, noting a regular peak occurring 

every March. Specifically, the Stacked LSTM model showed its highest forecasting error of 2 
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percent during the harvesting months of March and April 2023, while recording a somewhat higher 

forecasting error of 3.31 percent in the pre-sowing months of October and November 2022. These 

findings carry significance for farmers as they can strategically plan their production to coincide 

with periods of increased prices. Additionally, traders and policymakers can leverage this valuable 

information to make more profitable decisions and craft effective policies based on these price 

patterns. These outcomes align with prior studies that also recognized the dominance of the 

Stacked LSTM model in diverse areas, including Stock market forecast [54], Wind speed 

forecasting [55], dynamic spot price forecasting [56], Stock market behaviour prediction [58], 

Predicting the number of customer transactions [59], day-ahead electricity price forecasting [60] 

and predicting the number of cases and deaths caused by COVID-19 [61]. Additionally, studies 

have emphasized the significance of the number of LSTM layers used in stacked LSTM models 

as shown in [62]. 

CONCLUSION 

Our comprehensive exploration of deep learning models demonstrates that the Stacked LSTM 

model outperforms other models in forecasting cotton prices in Gujarat from May 2023 and April 

2024. It consistently displays an annual peak in March and excels by showcasing minimal 

forecasting errors, with only a 2% error during the harvest period (March and April 2023), 

compared to 3.31% during the pre-sowing months (October and November 2022). The model's 

exceptional performance across diverse evaluation metrics attests to its ability to recognize 

prolonged data patterns, establishing it as the favoured option for precise cotton price forecasting. 

These findings hold significant implications for stakeholders in the cotton industry, offering them 

valuable insights to inform strategic decisions related to production and marketing strategies, 

assists farmers in adjusting to market changes and promotes investments. 

This study faced inherent challenges in addressed missing values, which is incorporated by 

imputing the average price from the preceding five working days. Future endeavours should 

address the challenges related to vanishing and exploding gradients while further refining data pre-

processing techniques. Looking ahead, incorporating weather patterns and arrival data could 

enhance predictions by considering how climate and market arrivals impact prices. Furthermore, 

exploration into hybrid models and ensemble techniques might offer a promising direction for even 

more accurate predictions in cotton price forecasting. In conclusion, this research contributes 

valuable insights into the potential of deep learning models for cotton price forecasting, 

emphasizing adaptability, accuracy and the Stacked LSTM model's efficacy as it emerges as the 

optimal choice for forecasting cotton prices in Gujarat, signifying its practical applicability and 

robust performance. 
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