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ABSTRACT 

Advanced detection of disease within crops can help minimize potential production losses, 
decrease environmental risk, and reduce the cost of farming. The objective of this study was the 
detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants at two 
different growth stages using a handheld hyperspectral spectroradiometer. Hyperspectral 
reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative 
and tuber bulking growth stages. The spectra were analyzed using principal component analysis 
(PCA) and spectral change (ratio) analysis. PCA successfully distinguished more heavily 
diseased plants from healthy and minimally diseased plants using two principal components. 
Spectral change (ratio) analysis found optimal wavelengths (505, 510, 640, 665, 690, 750, and 
935 nm) which were most sensitive to early blight infection. ANOVA results indicated a highly 
significant difference (p < 0.0001) between disease rating group means. Comparisons of diseased 
plants versus healthy plants using Fisher’s LSD revealed more heavily diseased plants were 

significantly different from healthy plants. The results of this study demonstrated the capability 
of the PCA and spectral change (ratio) analysis techniques for detection of early blight disease in 
potato plants. 
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1.0 INTRODUCTION 

Remote sensing can detect small changes in the reflectance characteristics of vegetation 
throughout the growing season, providing information for crop production analysis and decision 
making activities. Depending on the type and vigor of the vegetation, a varying amount of 
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energy in the visible and infrared wavelength regions is reflected by the vegetation. When 
vegetation suffers from one or more stress factors like drought, nutrient deficiency, and pest or 
disease infestation, chlorophyll production decreases, which results in a reduction of absorption 
in the red and blue visible regions and a subsequent increase in the amount of reflectance in these 
regions (Yang et al., 2010). Traditional methods for determining crop status, like pigment 
analysis (chlorophylls, carotenoids, and anthocyanins), are time consuming, expensive, and 
require destruction of the retained leaves; whereas spectral reflectance curves provide a means to 
ascertain pigment content with a rapid, non-invasive procedure (Gitelson et al., 2006). Empirical 
relationships can be established between the factors that cause plant stress and the variations 
observed in the resulting reflectance signatures (Jacquemoud and Ustin, 2001). Many researchers 
have examined vegetation pigment levels using reflectance data at specific wavelengths or by 
creating ratios of reflectance data values at several specific wavelengths (Gitelson et al., 2006; 
Gitelson et al., 2002; Blackburn, 1998a; Blackburn, 1998b; Serrano et al., 2002; Haboudane et 
al., 2008) or at the red-edge (Jones and Vaughan, 2010). 

Spectral reflectance data provides a means for detection of disease infestation to help reduce 
potential production losses, restrain environmental risk, and decrease the cost of farming. Large-
scale tomato growers apply pesticides, especially fungicides, on a calendar-based application 
schedule because the treatment window can be very short for their high-value crops (Zhang et 
al., 2005). An example of a fungus with a short treatment window is the fungus late blight, 
Phytophthora infestans, which has a treatment window of one week. According to Ray et al. 
(2011), P. infestans cuts global potato production by approximately 15%, but in India, one out of 
every three to four years, the production losses are much larger. Depending on the area and the 
specific weather conditions, late blight can cut yield up to 75% in major potato producing 
regions within India, making initial detection essential for disease control (Ray et al., 2011). 

Ground field surveying has revealed that stress in wheat fields is not uniformly distributed; some 
areas are highly stressed while other areas are completely stress-free (Backoulou et al., 2011). 
According to Zhang et al. (2003), one may believe aggressive crop scouting to be the solution to 
aggressive diseases, but conventional ground scouting has not provided an efficient means of 
detection and monitoring for large tomato crops.  

Irrespective of whether or not high value crops are infected with a disease, growers typically 
apply pesticides as insurance to diminish the risk of losing large amounts of their crop. 
Agricultural producers spray chemicals uniformly over entire fields to prevent or control disease, 
which is unnecessarily costly since disease infestation is predominately concentrated in patches 
around original foci where disease originates (Moshou et al., 2004), with large areas of fields 
free from disease at any stage of infestation (Bravo et al., 2003). In addition to higher production 
costs, repeated application of pesticides increases the risk of pests adapting to the pesticides, 
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rendering the pesticides virtually ineffective. Excessive pesticide application may also increase 
the amount of toxic residues contaminating ground water, making targeted pesticide placement at 
the correct time an important goal. To prevent overuse of chemicals, growers need a remote 
sensing system that can provide timely detection of diseases (Zhang et al., 2005). 

Zhang et al. (2002) demonstrated the ability to distinguish healthy tomato plants from late blight 
infected plants using PCA, cluster analysis, and spectral ratio analysis in several fields of 
tomatoes with varying levels of infection. More heavily diseased plants that reached the point of 
economic loss could be discriminated from healthy and minimally diseased plants (Zhang et al., 
2002). Zhang et al. (2003) completed supervised classification of tomato fields to distinguish late 
blight infected plants from healthy plants using airborne imagery. It was found that reflectance 
signatures for healthy plants and minimally diseased plants were highly correlated with R2 = 
0.96. Reflectance signatures for more severely diseased plants were also highly correlated. The 
correlation between reflectance signatures for healthy/minimally diseased plants and severely 
diseased plants was weak with R2 = 0.034 (Zhang et al., 2003).  Early blight, like late blight, 
adversely affects both tomato and potato crop yields.  

Timely detection of diseases like early blight and late blight within crops is critical to minimize 
potential losses of production, decrease the risk of ground water contamination from over-
application of pesticides, and reduce the cost of farming. Growers need advanced remote sensing 
research and tools to provide early detection of diseases and pests for accurate treatment. 

1.1 Research Objective 

This study’s objective was the differentiation of healthy potato (Solanum tuberosum) plants from 
early blight (Alternaria solani) diseased potato plants at two growth stages using a hyperspectral 
spectroradiometer prior to definitive evidence of early blight disease using visual disease 
symptoms.   

2.0 MATERIALS AND METHODS 

2.1 Experimental design  

The studies consisted of potato variety Solanum tuberosum cv. ’Canela Russet’ (Holm et al., 

2012) grown to the vegetative (3-6 weeks) and tuber bulking (8-12 weeks) growth stages 
(Pavlista, 1995). Each study consisted of a single factor, disease rating (Table 1), with repeated 
measures of two reflectance data capture events “measurement events” per week for 5 weeks for 

a total of 10 spectral data capture events. The 5-week period extended from disease inoculation 
to the point that the majority of inoculated plants suffered from multiple early blight blotches 
(“bull’s eyes”) on over half of the plant’s foliage. A disease rating system was adapted from 

Zhang et al. (2002) and is detailed in Table 1 and Figure 1. Prior to each reflectance 
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measurement event, each plant was examined and assigned a specific disease rating. The 
captured reflectance values served as the independent variable. 

Table 1. Disease Progression Rating Levels 

Rating 
Level Description 
R0 Healthy plant - no indication of disease 
R1 Small spots on one or two leaves of plant canopy, no “bulls eyes” 

R2 Small spots on more than two leaves & less than half of plant canopy, no “bulls 
eyes” 

R3 Small spots on more than half of plant canopy, no “bull’s eyes”  
R4 Single “bull’s eye” (with spots) on one or two leaves of plant canopy 

R5 Multiple “bull’s eyes” (with spots) on more than two leaves, but less than half of 
plant canopy 

R6 Multiple “bull’s eyes” (with spots) on more than half of plant canopy 
  

 
Figure 1. Disease progression by rating level 

 

2.2 Hyperspectral reflectance equipment 

An ASD FieldSpec® 3 spectroradiometer (ASD Inc., Boulder, CO) with a spectral range of 350–

1,800 nm and a spectral resolution of 3 nm Full-Width-Half-Maximum (FWHM) at 700 nm and 
10 nm FWHM at 1,400 nm was used to capture hyperspectral reflectance signatures from the 
potato plants in this study. The spectroradiometer’s sampling interval was 1.4 nm for the 350–

1,000 nm range and 2 nm in the 1,000–1,800 nm range. A white reference panel that reflects 
nearly 100% of ambient energy was used for calibration of light source illumination, which can 
change as data is collected.  

2.3 Potato plants and inoculation 
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Within a greenhouse located at the Horticulture Research Center of Southern Illinois University 
(Carbondale, Illinois), two similar environmental chambers were constructed to isolate the potato 
plants from introduction of pathogens or other outside factors. Potatoes were planted in one 
gallon plastic nursery pots filled 90% full with Fafard® Growing Mix 2 (Sun Gro®, Pine Bluff, 
AR) plant bedding material on May 10th and June 21st, 42 days apart so when inoculated with 
Alternaria solani, one set of plants were within the vegetative growth stage while a second set of 
plants were within the tuber bulking growth stage. The two separate plantings ensured plants 
within each of the two growth stages could be differentiated as healthy or infected. Each planting 
consisted of four replicates (Xue et al., 2004; Yao et al., 2012) of control and infected plants for 
a total of eight Canela Russet potato plants. All plants were watered daily. Osmocote Smart-
Release® 14-14-14 (NPK) granular plant food (15 grams) was applied to each pot after planting 
and approximately 8 weeks thereafter. On a weekly basis, prior to inoculation with A. solani, 
each plant was randomly moved to either a new location within the same chamber or to the other 
chamber to minimize microclimate effects.  

An equal number of vegetative and tuber bulking plants were randomly segregated into either the 
first or the second chamber at the time of inoculation. One chamber became the control chamber 
and the second chamber became the inoculation chamber. A. solani conidia inoculum with a 
concentration of 5 x 106 conidia per mL was applied to the foliage of each plant in the 
inoculation chamber at a rate of roughly 4 mL per plant using a spray bottle.  Koch’s (Schumann 

and D’Arcy, 2010) postulates were fulfilled while generating A. solani conidia for this study. A 
humidifier (Hydrofogger®, Hydrofogger.com, Greenville, SC) was incorporated into the 
inoculation chamber to provide sufficient humidity to aid in germination of the A. solani 
pathogen. Humidity was maintained near 95% for the first 48 hours after inoculation. Each day 
thereafter, the humidifier was operated to increase relative humidity to 90 - 95% for 6 to 8 hours 
during the hottest time of the day to minimize heat buildup and encourage additional spore 
germination, which may occur within several hours once moisture is present on foliage, then 
humidity was allowed to drop to the ambient humidity level for the remainder of the day. 

2.4 Hyperspectral data collection 

Hyperspectral reflectance signatures from each plant were captured on the day of inoculation, 
(just prior to inoculation) and four days thereafter and was repeated weekly for a total of 5 weeks 
or 10 measurement events. Measurement protocols were established to minimize environmental 
variability. Reflectance data was captured between 11:00 am and 1:00 pm to maximize sunlight 
and prior to daily watering to ensure plant moisture consistency. The spectroradiometer was 
allowed to run for at least 20 minutes prior to capturing reflectance data to avoid steps between 
wavelength regions due to different warmup rates for each sensor within the spectrometer. Each 
plant was centered (nadir) under the radiometer’s fiber optic input, which was mounted at a 
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distance sufficient to achieve an instantaneous field of view (IFOV) of 80% of the plant’s 

canopy. The IFOV contained only the plant’s canopy. The spectrometer was calibrated using the 

white reference panel prior to capturing reflectance data from each plant.  Immediately after 
calibration, several curves were observed to ensure reflectance varied very little from the 
calibrated 100% reflectance value. If reflectance varied, calibration was performed again. If 
reflectance did not vary, the radiometer was engaged to capture 10 hyperspectral curves from the 
plant over a period of 15 seconds to minimize variance from the calibrated state. 

Reflectance curves were captured from the control plants, followed by the inoculated plants to 
reduce the risk of contaminating the control plants from prior handling of the inoculated plants. 
The ordering of plants within the control group and within the inoculated group was random. 
Plants were returned to each chamber in a different location to reduce microclimate effects. 
Mapping between each plant’s identification tag and the captured reflectance files was logged to 

ensure each reflectance file could be linked to the plant responsible for the reflectance curve. The 
hyperspectral data was then stored for subsequent analysis. 

2.5 Hyperspectral data pre-processing 

The hyperspectral data curves were modified to remove wavelengths between 1355-1415 nm due 
to high levels of noise caused by atmospheric water vapor (ASD Inc., 2010) and between 350-
400 nm due to high levels of noise (Apan et al., 2005). The hyperspectral curves were then pre-
processed similar to Zhang et al. (2002) to retain reflectance values within two standard 
deviations of the mean for the reflectance values at each wavelength for each plant of each 
measurement event. Each reflectance value was compared to the mean of the other nine values at 
the same wavelength to determine if each value was within two standard deviations of the mean. 
Most of the 13,420 original reflectance values per measurement event were retained with only 
0.86% of the reflectance values dropped. At each wavelength, the mean of the retained 
reflectance values was calculated per plant at each measurement event, like Ray et al. (2011), to 
obtain an initial composite signature.  

Previous studies like Thenkabail et al. (2002) demonstrated bands in close proximity provide 
redundant information. Some researchers (Jain et al., 2007) made effective use of composite 
signatures averaged over 10 nm intervals. To achieve a balance between averaging at 10 nm 
intervals and ensuring information was not lost, the composite signatures were averaged at five 
nm intervals which resulted in 270 wavelengths.  

2.6 Hyperspectral data analysis 

2.6.1 Principal component analysis (PCA) 

Analysis of the reflectance data was conducted using several complementary methods. The first 
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method used for analysis of the reflectance data was PCA (Zhang et al., 2002; Muhammed and 
Larsolle, 2003; Shahin and Symons, 2011). PCA functions as a data reduction technique by 
reducing a dataset to the components that hold the most value, which is the data that accounts for 
the majority of the variation in the dataset. The retained components provide nearly the same 
amount of information as the original dataset, but at a fraction of the size. The first principal 
component (PC) represents the largest portion of overall variation while the second PC 
represents the second largest portion of the overall variation and so on. In this manner, the PCs 
can be studied to provide insight into the differences inherent to the spectral reflectance 
properties of diseased and healthy plants. Determining the number of PCs to retain was essential 
because retaining too many components can lead to retention of unwanted noise whereas 
retention of too few components can lead to exclusion of crucial information. Methods used to 
determine an upper limit for PC retention were the scree test and eigenvalues greater than one 
test (SAS Institute Inc., 2008b) followed by a review of the factor loadings to determine the 
optimal number of factors to retain (Jensen, 2005). The principal components were computed 
using the PROC PRINCOMP function in SAS software (SAS Institute, 2014). 

2.6.2 Spectral change (ratio) analysis 

The second method used for analysis of the reflectance data was spectral change (ratio) analysis. 
Spectral change (ratio) curves help illuminate the disparity between the mean reflectance curve 
for each disease rating level and the healthy mean reflectance curve used as the reference. If the 
mean reflectance curve for a particular disease rating were identical to the healthy reflectance 
curve, the result per wavelength would be 1.0, since this would, in effect, be dividing a value by 
itself. If the reflectance at a particular wavelength for a diseased curve is less than the reflectance 
at the same wavelength for the healthy curve, the ratio will be less than 1.0. The same holds true 
for the inverse in which the reflectance at a particular wavelength for a diseased curve is greater 
than the reflectance at the same wavelength for the healthy curve, when the ratio will be greater 
than 1.0.  

Many studies in the literature (Apan et al., 2005; Ray et al., 2011; Bravo et al., 2003; Shafri and 
Hamden, 2009) utilized spectra captured at one point in time so it was impossible to determine 
how spectral reflectance signatures changed once a plant was infected with a pathogen and the 
subsequent change in reflectance as the plant responded to the invading pathogen. Since this 
study consisted of reflectance data captured on ten different dates ranging from just prior to 
inoculation with A. solani to the later stages of the disease, changes in reflectance were analyzed 
to determine the extent of change in reflectance values according to the plant’s disease rating 

level. The method used in this study to determine the extent of spectral change, similar to the 
method used by Zhang et al. (2002), was the division of the mean spectral reflectance curves of 
the diseased plants by the mean spectral reflectance curves of the healthy plants. This operation 
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was completed for each of the experiments. In this manner, one could determine the difference 
between spectral curves of plants with varying levels of disease from spectral curves of healthy 
plants as well as the wavelengths most sensitive to spectral change (maximum differences). 
Since these wavelengths provided the most value when attempting to differentiate between 
healthy and diseased plants, they could be considered potential optimal wavelengths for disease 
detection. To ascertain the statistical significance between the diseased and healthy mean 
spectral curves, the mean reflectance values at the optimal wavelengths were analyzed using an 
analysis of variance (ANOVA) with Fisher’s Least Significant Difference (LSD) post-hoc 
multiple comparison procedure to determine if a statistically significant difference existed 
between mean reflectance values of diseased plants versus mean reflectance values of healthy 
plants. An alpha level of 0.05 was used as the level of significance for the analyses. 

3.0 RESULTS 

3.1 Principal Component Analysis (PCA)  

PCA was completed on each experiment segregated by growth stage (vegetative (VG) or tuber 
bulking (TB)) for the 10 measurement events. The variance explained by each principal 
component (PC) along with the scree plots for each spectra can be seen in Figure 2. Eigenvector 
profiles can be seen in Figure 3.  

The variance explained by the first, second, and remaining eigenvectors was 69.8%, 19.4%, and 
10.8% for the VG stage and 66.2%, 20.7%, and 13.1% for the TB stage (fig. 2a). The scree plots 
exhibit an elbow at three PCs for both the VG and TB stages (fig. 2b). For each experiment, the 
first and second eigenvectors represented nearly 90% of the variance, so the first and second 
eigenvectors could be considered the PCs and the remaining eigenvectors could be dropped from 
the analysis. A distribution of eigenvectors is illustrated in Figure 3. The first PC for both VG 
and TB growth stages had greater eigenvector values in NIR while the second PC had greater 
eigenvector values in the visible range, demonstrating the regions with the greatest variation by 
PC. 
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Figure 2. a) Variance explained by PC; b) Scree Plot by PC 
 

 
 

Figure 3. Eigenvector profiles for first and second eigenvectors of VG and TB stages 
 
A summary of the reflectance samples with positive and negative linear correlation to the first 
two PCs are displayed in Table 2, similar to Zhang et al. (2002). PC1 in VG and TB stages was 
positively correlated with healthy (R0) and minimally infected (R1–R2) plants and negatively 
correlated with more heavily diseased (R4-R6) plants while PC2 was positively correlated with 
diseased (R5–R6) plants and negatively correlated with healthy (R0) and minimally diseased 
(R1-R2) plants. Since the two PCs for each experiment represented the majority of variance and 
were orthogonal to each other, it can be deduced that each PC represents a distinct portion of the 
reflectance samples. Correlation percentages may vary, but major trends in the data reveal each 
of the two PCs represent a different portion of the plant population.  
 

 

60%
65%
70%
75%
80%
85%
90%
95%

100%

1 2 3 4 5 6

V
ar

ia
n

ce
 E

xp
la

in
ed

Principal Component

Vegetative
Tuber Bulking

a)

0
25
50
75

100
125
150
175
200

1 2 3 4 5 6

Ei
ge

n
va

lu
e

Principal Component

Vegetative
Tuber Bulking

b)

-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

400 600 800 1000 1200 1455 1655

Ei
ge

n
ve

ct
o

r

Wavelength (nm)

Vegetative - PC1
Vegetative - PC2
Tuber Bulking - PC1
Tuber Bulking - PC2



International Journal of Agriculture and Environmental Research  
ISSN: 2455-6939 

Volume:03, Issue:03 "May-June 2017" 

 

www.ijaer.in                                   Copyright © IJAER 2017, All right reserved Page 3327 

 

Table 2. Correlation between spectra and PCs for plants in the VG and TB stages. 

Diseas
e 

Rating 

Vegetative Stage Tuber Bulking Stage 
PC1 - Linear 

Correlation % 
PC2 - Linear 

Correlation % 
PC1 - Linear 

Correlation % 
PC2 - Linear 

Correlation % 
Positiv

e 
Negativ

e 
Positiv

e 
Negativ

e 
Positiv

e 
Negativ

e 
Positiv

e 
Negativ

e 
R0 68.0% 32.0% 42.0% 58.0% 60.4% 39.6% 33.3% 66.7% 
R1 75.0% 25.0% 0.0% 100.0% 100.0% 0.0% 0.0% 100.0% 
R2 75.0% 25.0% 25.0% 75.0% 62.5% 37.5% 25.0% 75.0% 
R3 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 
R4 11.1% 88.9% 33.3% 66.7% 20.0% 80.0% 20.0% 80.0% 
R5 0.0% 100.0% 62.5% 37.5% 25.0% 75.0% 87.5% 12.5% 
R6 25.0% 75.0% 100.0% 0.0% 44.4% 55.6% 88.9% 11.1% 

3.2 Spectral change (ratio) analysis 

Spectral change (ratio) analysis was also completed on the ten measurement events. Mean 
spectral curves segregated by disease rating are depicted in Figure 4. Spectral ratios were 
calculated by dividing each mean diseased spectral reflectance curve by the mean healthy 
spectral reflectance curve at each wavelength for each experiment. The ratios of mean diseased 
reflectance curve by disease rating level to the mean healthy reflectance curve are illustrated in 
Figure 5. Wavelengths of interest between 400-1,000 nm were identified; higher wavelengths 
were removed from the figure for clarity. 
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Figure 4. Mean spectra of plants in a) VG stage; b) TB stage.  Note: n = sample size. 
 

The wavelengths that appear most sensitive or provide the greatest amount of change for the 
various ratios were found at 510, 640, 690, and 935 nm for VG (fig. 5a) and 505, 665, 750, and 
935 nm for TB (fig. 5b). From 1,000–1,800 nm, two regions (near 1,355 nm and near 1,800 nm) 
demonstrated increased sensitivity compared to other wavelengths within that range. 
Atmospheric water vapor may absorb light energy near 1400 nm and 1800 nm resulting in 
inconsistent reflectance levels from vegetation (ASD Inc., 2010). Since the wavelengths near 
1355 nm and 1800 nm may be suspect due to their proximity to known areas of atmospheric 
water vapor variation, these wavelengths were excluded from the potential optimal wavelengths. 
The proposed optimal wavelengths for this study were found to be 505, 510, 640, 665, 690, 750, 
and 935 nm. 
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Figure 5. Ratios of diseased to healthy plants in a) VG stage; b) TB stage. 
 

Spectra consisting of reflectance values at the proposed optimal wavelengths were then used to 
complete an Analysis of Variance (ANOVA) followed by Fisher’s LSD multiple comparison 

procedure (MCP). Omnibus ANOVA results were F(27, 132) = 128.92, p < 0.0001 and F(27, 132) = 
100.82, p < 0.0001, respectively for the VG stage and the TB stage indicating a highly significant 
difference between disease rating group means. Fisher’s LSD, in Table 3, demonstrated 

significant differences between diseased (R2, R4, and R5) plants and healthy (R0) plants for the 
VG stage and diseased (R4) plants and healthy (R0) plants for the tuber bulking stage.  Sample 
size was not identical across the disease rating levels due to differences in the speed of disease 
progression. 

Table 3. Fisher’s LSD using proposed optimal wavelengths. 

Vegetative Stage Tuber Bulking Stage 

Rating N Mean Std 
Dev Rating N Mean Std Dev 

R0 10 0.201 0.026 R0 8 0.322 0.028 
R1 4 0.187 0.025 R1 1 0.314  R2 4 0.178* 0.039 R2 8 0.325 0.039 
R3 1 0.196  R3 1 0.365  R4 9 0.173* 0.033 R4 5 0.285* 0.058 
R5 8 0.174* 0.021 R5 8 0.305 0.041 
R6 4 0.198 0.037 R6 9 0.295 0.063 

                          * Significant at 0.05 level 
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4.0 DISCUSSION 

Timely detection of insect and disease infestation within crops is critical to minimize potential 
losses of production, decrease the risk of ground water contamination from over-application of 
pesticides, and reduce the cost of farming. This study used several complementary methods to 
demonstrate the possibility of using spectral reflectance data to differentiate infected plants from 
healthy plants.  

Principal component analysis (PCA) found PC1 and PC2 were able to differentiate more heavily 
diseased (R5–R6) plants from healthy and minimally diseased (R1–R2) plants, since each PC 
represented a different segment of the plant population (Table 4). The principal sources of 
variation were healthy (R0) and minimally diseased (R1–R2) plants (PC1), followed by more 
heavily diseased (R5–R6) plants (PC2). R3 and R4 disease ratings were inconclusive. These 
results were similar to results found by Zhang et al. (2002) using PCA on reflectance spectra 
from late blight infected tomato plants, in which more heavily infected plants could readily be 
differentiated from healthy and minimally diseased plants using two PCs.  

Table 4. Groups of plant population represented by principal components. 

Principal Component Segment Representation 
Growth 
Stage PC 1 PC 2 

Vegetative Healthy (R0) & Minimally Diseased (R1 – 
R2) 

Diseased (R5 – 
R6) 

Tuber 
Bulking 

Healthy (R0) & Minimally Diseased (R1 – 
R2) 

Diseased (R5 – 
R6) 

 

Analysis of the reflectance spectra using spectral change (ratio) analysis revealed a significant 
difference between diseased plants and healthy plants to varying degrees depending upon the 
growth stage (Table 3). Comparing results of Table 3 to the results in Table 2 (PCA), one can see 
a direct correlation between the disease rating levels included in PC1 versus PC2. This shows 
spectral change analysis is capable of differentiating more heavily diseased (R5–R6) plants from 
healthy (R0) and minimally diseased (R1–R2) plants.  

The proposed optimal wavelength regions found for detection of early blight in this study (505–

510, 640, 665, 690, 750, and 935 nm) were similar to optimal wavelengths (543, 663, 761, and 
1993 nm) found by Zhang et al. (2002) while completing spectral change analysis on tomatoes 
infected with late blight. In the visible spectrum (roughly 400-700 nm), the leaf pigments 
chlorophyll a, chlorophyll b, and carotenes absorb much of the energy reaching the vegetation in 
the blue (450 nm) and red ranges (680 nm) (Jensen, 2005). Many of the wavelengths were within 
the “blue” and “red” visible wavelength regions that correspond to areas of high energy 
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absorption by chlorophyll, which is adversely affected when a plant is infected with a disease 
(Gitelson et al., 2001). Another photosynthetic pigment, anthocyanin (red pigments), aids in 
photosynthesis and protects leaves from excess light energy (Gitelson et al., 2006). 
Accumulation of anthocyanins result from drought, nutrient deficiencies, and bacterial and 
fungal infections (Gitelson et al., 2001). When a plant suffers from a stress factor such as pest or 
disease infestation, normal chlorophyll production diminishes, followed by a decrease in 
absorption and an increase in reflectance in the blue and red visible regions (Yang et al., 2010). 
Wavelengths within the NIR region also reduce reflectance because as the mesophyll layer of the 
plants leaves responds to pathogen invasion, the reflective capacity of the mesophyll layer 
decreases, causing a reduction in the NIR energy reflected.     

In this study, differentiation of diseased plants (R5-R6) from healthy plants (R0) was possible 
because the chlorophyll, carotene, and anthocyanin content had deteriorated to an extent that a 
statistically significant difference existed between the reflectance signatures of the more heavily 
diseased plants and the healthy plants.  The ability to discern healthy (R0) plants from minimally 
diseased (R1–R2) plants would clearly be optimal, but the differentiation of minimally diseased 
plants (R1-R2) from healthy plants was not possible because even though the chlorophyll, 
carotene, and anthocyanin content of the minimally diseased plants had deteriorated from that of 
the healthy plants, the deterioration was not to the extent that a statistically significant difference 
existed between the reflectance signatures of the minimally diseased plants and the healthy 
plants.   

5.0 CONCLUSIONS 

Hyperspectral reflectance spectra captured twice weekly for five weeks from Canela Russet 
potato plants grown to the vegetative (3–6 weeks) and tuber bulking (8–12 weeks) growth stages 
were analyzed using principal component analysis (PCA) and spectral change (ratio) analysis to 
determine if early blight could be detected. PCA demonstrated the capability of successfully 
distinguishing more heavily diseased plants from healthy and minimally diseased plants using 
two principal components. 

Spectral change (ratio) analysis provided wavelengths (505, 510, 640, 665, 690, 750, and 935 
nm) most sensitive to early blight. ANOVA results indicated a highly significant difference (p < 
0.0001) between disease rating group means. In the majority of the experiments, comparisons of 
diseased (R1–R6) plants with healthy (R0) plants using Fisher’s LSD revealed more heavily 
diseased plants were significantly different from healthy plants. 

The plants used for this study were grown in closed chambers and reflectance data was captured 
in a greenhouse environment. Additional research should be conducted to substantiate the results 
obtained in this study and to determine whether these results differ from field based results. 
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